Ejemplo n.º 1
0
def _process_lc_bin(itime, name, config, basedir, workdir, diff_sources, const_spectrum, roi, lck_params,
                    **kwargs):
    i, time = itime

    roi = copy.deepcopy(roi)

    config = copy.deepcopy(config)
    config['selection']['tmin'] = time[0]
    config['selection']['tmax'] = time[1]

    # create output directories labeled in MET vals
    outdir = basedir + 'lightcurve_%.0f_%.0f' % (time[0], time[1])
    config['fileio']['outdir'] = os.path.join(workdir, outdir)
    config['logging']['prefix'] = 'lightcurve_%.0f_%.0f ' % (time[0], time[1])
    config['fileio']['logfile'] = os.path.join(config['fileio']['outdir'],
                                               'fermipy.log')
    utils.mkdir(config['fileio']['outdir'])

    yaml.dump(utils.tolist(config),
              open(os.path.join(config['fileio']['outdir'],
                                'config.yaml'), 'w'))

    xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml')

    try:
        from fermipy.gtanalysis import GTAnalysis
        gta = GTAnalysis(config, roi, loglevel=logging.DEBUG)
        gta.logger.info('Fitting time range %i %i' % (time[0], time[1]))
        gta.setup()
    except:
        print('Analysis failed in time range %i %i' %
              (time[0], time[1]))
        print(sys.exc_info()[0])
        raise
        return {}

    gta._lck_params = lck_params
    # Recompute source map for source of interest and sources within 3 deg
    if gta.config['gtlike']['use_scaled_srcmap']:
        names = [s.name for s in
                 gta.roi.get_sources(distance=3.0, skydir=gta.roi[name].skydir)
                 if not s.diffuse]
        gta.reload_sources(names)

    # Write the current model
    gta.write_xml(xmlfile)

    # Optimize the model
    gta.optimize(skip=diff_sources,
                 shape_ts_threshold=kwargs.get('shape_ts_threshold'))

    fit_results = _fit_lc(gta, name, **kwargs)
    gta.write_xml('fit_model_final.xml')
    srcmodel = copy.deepcopy(gta.get_src_model(name))
    numfree = gta.get_free_param_vector().count(True)

    max_ts_thresholds = [None, 4, 9]
    for max_ts in max_ts_thresholds:
        if max_ts is not None:
            gta.free_sources(minmax_ts=[None, max_ts], free=False, exclude=[name])

        # rerun fit using params from full time (constant) fit using same
        # param vector as the successful fit to get loglike
        specname, spectrum = const_spectrum
        gta.set_source_spectrum(name, spectrum_type=specname,
                                spectrum_pars=spectrum,
                                update_source=False)
        gta.free_source(name, free=False)
        const_fit_results = gta.fit()
        if not const_fit_results['fit_success']:
            continue
        const_srcmodel = gta.get_src_model(name)

        # rerun using shape fixed to full time fit
        # for the fixed-shape lightcurve
        gta.free_source(name, pars='norm')
        fixed_fit_results = gta.fit()
        if not fixed_fit_results['fit_success']:
            continue
        fixed_srcmodel = gta.get_src_model(name)
        break
    
    # special lc output
    o = {'flux_const': const_srcmodel['flux'],
         'loglike_const': const_fit_results['loglike'],
         'fit_success': fit_results['fit_success'],
         'fit_success_fixed': fixed_fit_results['fit_success'],
         'fit_quality': fit_results['fit_quality'],
         'fit_status': fit_results['fit_status'],
         'num_free_params': numfree,
         'config': config}

    # full flux output
    if fit_results['fit_success'] == 1:
        for k in defaults.source_flux_output.keys():
            if not k in srcmodel:
                continue
            o[k] = srcmodel[k]
            o[k+'_fixed'] = fixed_srcmodel[k]

    gta.logger.info('Finished time range %i %i' % (time[0], time[1]))
    return o
Ejemplo n.º 2
0
class ExtensionFit:
    def __init__(self, configFile):

        self.gta = GTAnalysis(configFile, logging={'verbosity': 3})
        self.target = None
        self.targetRadius = None
        self.distance = None
        self.catalog = fits.getdata('/users-data/mfalxa/code/gll_psch_v13.fit',
                                    1)

    def setSourceName(self, sourceObject, newName):
        self.gta.delete_source(sourceObject['name'])
        self.gta.add_source(newName, sourceObject)

    ''' INITIALIZE '''

    def initialize(self, sizeROI, rInner, addToROI, TSMin, debug):

        self.gta.setup()
        if self.gta.config['selection']['emin'] >= 10000:
            self.gta.set_parameter('galdiff', 'Scale', 30000)

        if debug == True:
            self.gta.make_plots('startAll')
            self.gta.residmap(prefix='startAll', make_plots=True)

        # Get model source names
        sourceList = self.gta.get_sources(exclude=['isodiff', 'galdiff'])

        # Delete sources unassociated with TS < 50
        for i in range(len(sourceList)):
            if sourceList[i]['catalog']['TS_value'] < TSMin and self.catalog[
                    'CLASS'][self.catalog['Source_Name'] == sourceList[i]
                             ['name']][0] == '':
                self.gta.delete_source(sourceList[i]['name'])

        closests = self.gta.get_sources(distance=rInner,
                                        exclude=['isodiff', 'galdiff'])

        # Delete all unidentified sources
        for i in range(len(closests)):
            if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i]
                                     ['name']][0].isupper() == False:
                self.gta.delete_source(closests[i]['name'])
            if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i]
                                     ['name']][0] == 'SFR':
                self.target = closests[i]
                self.setSourceName(self.target, 'TESTSOURCE')

# If debug, save ROI and make plots
        if debug == True:
            self.gta.write_roi('startModel')
            self.gta.residmap(prefix='start', make_plots=True)
            self.gta.make_plots('start')

        # Optmize spectral parameters for sources with npred > 1
        self.gta.optimize(npred_threshold=1, skip=['isodiff'])

        # Get model source names
        sourceList = self.gta.get_sources(distance=sizeROI + addToROI,
                                          square=True,
                                          exclude=['isodiff', 'galdiff'])

        # Iterate source localizing on source list
        for i in range(len(sourceList)):
            if sourceList[i].extended == False:
                self.gta.localize(sourceList[i]['name'],
                                  write_fits=False,
                                  write_npy=False,
                                  update=True)

        # Free sources within ROI size + extra distance from center
        self.gta.free_sources(distance=sizeROI + addToROI, square=True)

        # Re-optimize ROI
        self.gta.optimize(skip=['isodiff'])

        # Save and make plots if debug
        if debug == True:
            self.gta.write_roi('modelInitialized')
            self.gta.residmap(prefix='initialized', make_plots=True)
            self.gta.make_plots('initialized')

        # Lock sources
        self.gta.free_sources(free=False)

    ''' OUTER REGION '''
    def outerRegionAnalysis(self, sizeROI, rInner, sqrtTsThreshold,
                            minSeparation, debug):

        self.gta.free_sources(distance=sizeROI,
                              pars='norm',
                              square=True,
                              free=True)
        self.gta.free_sources(distance=rInner, free=False)
        self.gta.free_source('galdiff', free=True)
        self.gta.free_source('isodiff', free=False)

        # Seek new sources until none are found
        sourceModel = {
            'SpectrumType': 'PowerLaw',
            'Index': 2.0,
            'Scale': 30000,
            'Prefactor': 1.e-15,
            'SpatialModel': 'PointSource'
        }
        newSources = self.gta.find_sources(sqrt_ts_threshold=sqrtTsThreshold,
                                           min_separation=minSeparation,
                                           model=sourceModel,
                                           **{
                                               'search_skydir':
                                               self.gta.roi.skydir,
                                               'search_minmax_radius':
                                               [rInner, sizeROI]
                                           })

        if len(newSources) > 0:
            for i in range(len(newSources)):
                if newSources['sources'][i]['ts'] > 100.:
                    self.gta.set_source_spectrum(
                        newSources['sources'][i]['name'],
                        spectrum_type='LogParabola')
                    self.gta.free_source(newSources['sources'][i]['name'])
                    self.gta.fit()
                    self.gta.free_source(newSources['sources'][i]['name'],
                                         free=False)

        # Optimize all ROI
        self.gta.optimize(skip=['isodiff'])

        # Save sources found
        if debug == True:
            self.gta.residmap(prefix='outer', make_plots=True)
            self.gta.write_roi('outerAnalysisROI')
            self.gta.make_plots('outer')

    ''' INNER REGION '''

    def innerRegionAnalysis(self, sizeROI, rInner, maxIter, sqrtTsThreshold,
                            minSeparation, dmMin, TSm1Min, TSextMin, debug):

        self.gta.free_sources(distance=sizeROI, square=True, free=False)
        self.gta.free_sources(distance=rInner, free=True, exclude=['isodiff'])

        # Keep closest source if identified with star forming region in catalog or look for new source closest to center within Rinner
        if self.target != None:
            print('Closest source identified with star forming region : ',
                  self.target['name'])
            self.gta.set_source_morphology('TESTSOURCE',
                                           **{'spatial_model': 'PointSource'})
        else:
            closeSources = self.gta.find_sources(sqrt_ts_threshold=2.,
                                                 min_separation=minSeparation,
                                                 max_iter=1,
                                                 **{
                                                     'search_skydir':
                                                     self.gta.roi.skydir,
                                                     'search_minmax_radius':
                                                     [0., rInner]
                                                 })
            dCenter = np.array([])
            for i in range(len(closeSources['sources'])):
                dCenter = np.append(
                    dCenter,
                    self.gta.roi.skydir.separation(
                        closeSources['sources'][i].skydir).value)
            self.target = closeSources['sources'][np.argmin(dCenter)]
            print('Target name : ', self.target['name'])
            self.setSourceName(self.target, 'TESTSOURCE')
            for i in [
                    x for x in range(len(closeSources['sources']))
                    if x != (np.argmin(dCenter))
            ]:
                self.gta.delete_source(closeSources['sources'][i]['name'])
            self.gta.optimize(skip=['isodiff'])

        # Initialize n sources array
        nSources = []

        # Save ROI without extension fit
        self.gta.write_roi('nSourcesFit')

        if debug == True:
            self.gta.make_plots('innerInit')
            self.gta.residmap(prefix='innerInit', make_plots=True)

        # Test for extension
        extensionTest = self.gta.extension('TESTSOURCE',
                                           make_plots=True,
                                           write_npy=debug,
                                           write_fits=debug,
                                           spatial_model='RadialDisk',
                                           update=True,
                                           free_background=True,
                                           fit_position=True)
        extLike = extensionTest['loglike_ext']
        TSext = extensionTest['ts_ext']
        print('TSext : ', TSext)
        extAIC = 2 * (len(self.gta.get_free_param_vector()) -
                      self.gta._roi_data['loglike'])
        self.gta.write_roi('extFit')

        if debug == True:
            self.gta.residmap(prefix='ext0', make_plots=True)
            self.gta.make_plots('ext0')

        self.gta.load_roi('nSourcesFit', reload_sources=True)

        for i in range(1, maxIter + 1):

            # Test for n point sources
            nSourcesTest = self.gta.find_sources(
                sources_per_iter=1,
                sqrt_ts_threshold=sqrtTsThreshold,
                min_separation=minSeparation,
                max_iter=1,
                **{
                    'search_skydir': self.gta.roi.skydir,
                    'search_minmax_radius': [0., rInner]
                })

            if len(nSourcesTest['sources']) > 0:

                if nSourcesTest['sources'][0]['ts'] > 100.:
                    self.gta.set_source_spectrum(
                        nSourcesTest['sources'][0]['name'],
                        spectrum_type='LogParabola')
                    self.gta.free_source(nSourcesTest['sources'][0]['name'])
                    self.gta.fit()
                    self.gta.free_source(nSourcesTest['sources'][0]['name'],
                                         free=False)

                if debug == True:
                    self.gta.make_plots('nSources' + str(i))

                nSources.append(nSourcesTest['sources'])
                self.gta.localize(nSourcesTest['sources'][0]['name'],
                                  write_npy=debug,
                                  write_fits=debug,
                                  update=True)
                nAIC = 2 * (len(self.gta.get_free_param_vector()) -
                            self.gta._roi_data['loglike'])
                self.gta.free_source(nSourcesTest['sources'][0]['name'],
                                     free=True)
                self.gta.residmap(prefix='nSources' + str(i), make_plots=True)
                self.gta.write_roi('n1SourcesFit')

                # Estimate Akaike Information Criterion difference between both models
                dm = extAIC - nAIC
                print('AIC difference between both models = ', dm)

                # Estimate TS_m+1
                extensionTestPlus = self.gta.extension(
                    'TESTSOURCE',
                    make_plots=True,
                    write_npy=debug,
                    write_fits=debug,
                    spatial_model='RadialDisk',
                    update=True,
                    free_background=True,
                    fit_position=True)
                TSm1 = 2 * (extensionTestPlus['loglike_ext'] - extLike)
                print('TSm+1 = ', TSm1)

                if debug == True:
                    self.gta.residmap(prefix='ext' + str(i), make_plots=True)
                    self.gta.make_plots('ext' + str(i))

                if dm < dmMin and TSm1 < TSm1Min:
                    self.gta.load_roi('extFit', reload_sources=True)
                    break
                else:

                    # Set extension test to current state and save current extension fit ROI and load previous nSources fit ROI
                    extensionTest = extensionTestPlus
                    extLike = extensionTestPlus['loglike_ext']
                    TSext = extensionTestPlus['ts_ext']
                    print('TSext : ', TSext)
                    extAIC = 2 * (len(self.gta.get_free_param_vector()) -
                                  self.gta._roi_data['loglike'])
                    self.gta.write_roi('extFit')
                    self.gta.load_roi('n1SourcesFit', reload_sources=True)
                    self.gta.write_roi('nSourcesFit')

            else:
                if TSext > TSextMin:
                    self.gta.load_roi('extFit', reload_sources=True)
                    break
                else:
                    self.gta.load_roi('nSourcesFit', reload_sources=True)
                    break

        self.gta.fit()

        # Get source radius depending on spatial model
        endSources = self.gta.get_sources()
        for i in range(len(endSources)):
            if endSources[i]['name'] == 'TESTSOURCE':
                self.target = endSources[i]
                self.distance = self.gta.roi.skydir.separation(
                    endSources[i].skydir).value
                if endSources[i].extended == True:
                    self.targetRadius = endSources[i]['SpatialWidth']
                else:
                    self.targetRadius = endSources[i]['pos_r95']

    ''' CHECK OVERLAP '''

    def overlapDisk(self, rInner, radiusCatalog):

        print('Target radius : ', self.targetRadius)

        # Check radius sizes
        if radiusCatalog < self.targetRadius:
            r = float(radiusCatalog)
            R = float(self.targetRadius)
        else:
            r = float(self.targetRadius)
            R = float(radiusCatalog)

        # Estimating overlapping area
        d = self.distance
        print('Distance from center : ', d)

        if d < (r + R):
            if R < (r + d):
                area = r**2 * np.arccos(
                    (d**2 + r**2 - R**2) / (2 * d * r)) + R**2 * np.arccos(
                        (d**2 + R**2 - r**2) / (2 * d * R)) - 0.5 * np.sqrt(
                            (-d + r + R) * (d + r - R) * (d - r + R) *
                            (d + r + R))
                overlap = round((area / (np.pi * r**2)) * 100, 2)
            else:
                area = np.pi * r**2
                overlap = 100.0
        else:
            area = 0.
            overlap = 0.

        print('Overlapping surface : ', area)
        print('Overlap : ', overlap)

        if overlap > 68. and self.distance < rInner:
            associated = True
        else:
            associated = False

        return associated

    ''' CHECK UPPER LIMIT '''

    def upperLimit(self, name, radius):
        sourceModel = {
            'SpectrumType': 'PowerLaw',
            'Index': 2.0,
            'Scale': 30000,
            'Prefactor': 1.e-15,
            'SpatialModel': 'RadialDisk',
            'SpatialWidth': radius,
            'glon': self.gta.config['selection']['glon'],
            'glat': self.gta.config['selection']['glat']
        }
        self.gta.add_source(name, sourceModel, free=True)
        self.gta.fit()
        self.gta.residmap(prefix='upperLimit', make_plots=True)
        print('Upper limit : ', self.gta.get_sources()[0]['flux_ul95'])
Ejemplo n.º 3
0
def _process_lc_bin(itime, name, config, basedir, workdir, diff_sources, const_spectrum, roi, lck_params,
                    **kwargs):
    i, time = itime

    roi = copy.deepcopy(roi)

    config = copy.deepcopy(config)
    config['selection']['tmin'] = time[0]
    config['selection']['tmax'] = time[1]

    # create output directories labeled in MET vals
    outdir = basedir + 'lightcurve_%.0f_%.0f' % (time[0], time[1])
    config['fileio']['outdir'] = os.path.join(workdir, outdir)
    config['logging']['prefix'] = 'lightcurve_%.0f_%.0f ' % (time[0], time[1])
    config['fileio']['logfile'] = os.path.join(config['fileio']['outdir'],
                                               'fermipy.log')
    utils.mkdir(config['fileio']['outdir'])

    yaml.dump(utils.tolist(config),
              open(os.path.join(config['fileio']['outdir'],
                                'config.yaml'), 'w'))

    xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml')

    try:
        from fermipy.gtanalysis import GTAnalysis
        gta = GTAnalysis(config, roi, loglevel=logging.DEBUG)
        gta.logger.info('Fitting time range %i %i' % (time[0], time[1]))
        gta.setup()
    except:
        print('Analysis failed in time range %i %i' %
              (time[0], time[1]))
        print(sys.exc_info()[0])
        raise
        return {}

    gta._lck_params = lck_params
    # Recompute source map for source of interest and sources within 3 deg
    if gta.config['gtlike']['use_scaled_srcmap']:
        names = [s.name for s in
                 gta.roi.get_sources(distance=3.0, skydir=gta.roi[name].skydir)
                 if not s.diffuse]
        gta.reload_sources(names)

    # Write the current model
    gta.write_xml(xmlfile)

    # Optimize the model
    gta.optimize(skip=diff_sources,
                 shape_ts_threshold=kwargs.get('shape_ts_threshold'))

    fit_results = _fit_lc(gta, name, **kwargs)
    gta.write_xml('fit_model_final.xml')
    srcmodel = copy.deepcopy(gta.get_src_model(name))
    numfree = gta.get_free_param_vector().count(True)
    
    const_srcmodel = gta.get_src_model(name).copy()
    fixed_fit_results = fit_results.copy()
    fixed_srcmodel = gta.get_src_model(name).copy()
    fixed_fit_results['fit_success'],fixed_srcmodel['fit_success'] = [False,False]
    fixed_fit_results['fit_quality'],fixed_srcmodel['fit_quality'] = [0,0]
    max_ts_thresholds = [None, 4, 9, 16, 25]
    for max_ts in max_ts_thresholds:
        if max_ts is not None:
            gta.free_sources(minmax_ts=[None, max_ts], free=False, exclude=[name])

        # rerun fit using params from full time (constant) fit using same
        # param vector as the successful fit to get loglike
        specname, spectrum = const_spectrum
        gta.set_source_spectrum(name, spectrum_type=specname,
                                spectrum_pars=spectrum,
                                update_source=False)
        gta.free_source(name, free=False)
        const_fit_results = gta.fit()
        if not const_fit_results['fit_success']:
            continue
        const_srcmodel = gta.get_src_model(name)
        # rerun using shape fixed to full time fit
        # for the fixed-shape lightcurve
        gta.free_source(name, pars='norm')
        fixed_fit_results = gta.fit()
	if not fixed_fit_results['fit_success']:
            continue
        fixed_srcmodel = gta.get_src_model(name)
        break
    
    # special lc output
    o = {'flux_const': const_srcmodel['flux'],
         'loglike_const': const_fit_results['loglike'],
         'fit_success': fit_results['fit_success'],
         'fit_success_fixed': fixed_fit_results['fit_success'],
         'fit_quality': fit_results['fit_quality'],
         'fit_status': fit_results['fit_status'],
         'num_free_params': numfree,
         'config': config}
    # full flux output
    if fit_results['fit_success'] == 1:
        for k in defaults.source_flux_output.keys():
            if not k in srcmodel:
                continue
            o[k] = srcmodel[k]
            o[k+'_fixed'] = fixed_srcmodel[k]

    gta.logger.info('Finished time range %i %i' % (time[0], time[1]))
    return o