Ejemplo n.º 1
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if not HAVE_ST:
            raise RuntimeError("Trying to run fermipy analysis, but don't have ST")
        
        gta = GTAnalysis(args.config, logging={'verbosity': 3},
                         fileio={'workdir_regex': '\.xml$|\.npy$'})

        gta.setup(overwrite=False)
        gta.free_sources(False)
        gta.print_roi()
        gta.optimize()
        gta.print_roi()

        exclude = ['3FGL J1707.8+5626']

        # Localize all point sources
        for src in sorted(gta.roi.sources, key=lambda t: t['ts'], reverse=True):
            #    for s in gta.roi.sources:

            if not src['SpatialModel'] == 'PointSource':
                continue
            if src['offset_roi_edge'] > -0.1:
                continue

            if src.name in exclude:
                continue
            if not '3FGL' in src.name:
                continue

            gta.localize(src.name, nstep=5, dtheta_max=0.5, update=True,
                         prefix='base', make_plots=True)

        gta.optimize()
        gta.print_roi()

        gta.write_roi('base_roi', make_plots=True)

        gta.find_sources(sqrt_ts_threshold=5.0)
        gta.optimize()
        gta.print_roi()
        gta.print_params()

        gta.free_sources(skydir=gta.roi.skydir, distance=1.0, pars='norm')
        gta.fit()
        gta.print_roi()
        gta.print_params()

        gta.write_roi('fit_baseline', make_plots=True)
Ejemplo n.º 2
0
def main():

    usage = "usage: %(prog)s [config file]"
    description = "Run fermipy analysis chain."
    parser = argparse.ArgumentParser(usage=usage, description=description)

    parser.add_argument('--config', default='sample_config.yaml')
    parser.add_argument('--source', default=None)

    args = parser.parse_args()
    gta = GTAnalysis(args.config)

    if args.source is None:
        src_name = gta.roi.sources[0].name

    gta.setup()
    gta.optimize()

    loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True)

    model = {'Index': 2.0, 'SpatialModel': 'PointSource'}
    srcs = gta.find_sources(model=model,
                            sqrt_ts_threshold=5.0,
                            min_separation=0.5)

    sed = gta.sed(src_name, free_radius=1.0, make_plots=True)
    gta.tsmap(make_plots=True)
    gta.write_roi('fit0')
    lc = gta.lightcurve(src_name,
                        binsz=86400. * 7.0,
                        free_radius=3.0,
                        use_scaled_srcmap=True,
                        multithread=False)
Ejemplo n.º 3
0
def run_analysis(config):
    print('Running analysis...')

    gta = GTAnalysis(config)
    gta.setup()
    gta.optimize()

    gta.print_roi()

    # Localize and generate SED for first source in ROI
    srcname = gta.roi.sources[0].name

    gta.free_source(srcname)
    gta.fit()

    gta.localize(srcname)
    gta.sed(srcname)

    gta.write_roi('roi', make_plots=True)
    gta.tsmap(make_plots=True)
    gta.residmap(make_plots=True)
Ejemplo n.º 4
0
def run_analysis(config):
    print('Running analysis...')

    gta = GTAnalysis(config)
    gta.setup()
    gta.optimize()

    gta.print_roi()

    # Localize and generate SED for first source in ROI
    srcname = gta.roi.sources[0].name

    gta.free_source(srcname)
    gta.fit()

    gta.localize(srcname)
    gta.sed(srcname)

    gta.write_roi('roi', make_plots=True)
    gta.tsmap(make_plots=True)
    gta.residmap(make_plots=True)
Ejemplo n.º 5
0
def main():
        
    usage = "usage: %(prog)s [config file]"
    description = "Run fermipy analysis chain."
    parser = argparse.ArgumentParser(usage=usage,description=description)

    parser.add_argument('--config', default = 'sample_config.yaml')
    parser.add_argument('--source', default = None)

    args = parser.parse_args()
    gta = GTAnalysis(args.config)

    if args.source is None:
        src_name = gta.roi.sources[0].name
    
    gta.setup()
    gta.optimize()

    if (gta.roi[src_name]['ts'] > 1000. and
        gta.roi[src_name]['SpectrumType'] == 'PowerLaw'):
        gta.set_source_spectrum(src_name, spectrum_type='LogParabola',
                                spectrum_pars={'beta' : {'value' : 0.0, 'scale' : 1.0,
                                                         'min' : 0.0, 'max' : 2.0}})

    gta.free_source(src_name)
    gta.fit()
    gta.free_source(src_name, False)

    loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True)

    model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}
    srcs = gta.find_sources(model=model, sqrt_ts_threshold=5.0,
                            min_separation=0.5)
    
    sed = gta.sed(src_name, free_radius=1.0, make_plots=True)
    gta.tsmap(make_plots=True)
    gta.tsmap(prefix='excludeSource', exclude=[src_name], make_plots=True)

    gta.write_roi('fit0')    
    lc = gta.lightcurve(src_name, binsz=86400.*28.0, free_radius=3.0, use_scaled_srcmap=True,
                        multithread=False)
Ejemplo n.º 6
0
def main():

    usage = "usage: %(prog)s [config file]"
    description = "Run fermipy analysis chain."
    parser = argparse.ArgumentParser(usage=usage, description=description)

    parser.add_argument('--config', default='sample_config.yaml')
    parser.add_argument('--source', default=None)

    args = parser.parse_args()
    gta = GTAnalysis(args.config)

    if args.source is None:
        src_name = gta.roi.sources[0].name

    gta.setup()
    gta.optimize()

    loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True)

    model = {'Index': 2.0, 'SpatialModel': 'PointSource'}
    srcs = gta.find_sources(model=model,
                            sqrt_ts_threshold=5.0,
                            min_separation=0.5)

    sed = gta.sed(src_name, free_radius=1.0, make_plots=True)
    gta.tsmap(make_plots=True)
    gta.write_roi('fit0')
    # make sure bins are shifted to line up with the end of the time window (where the neutrino arrived)
    tmax = 528835414
    LCbins = tmax - 119 * 28 * 24 * 3600 + numpy.linspace(0, 119,
                                                          120) * 28 * 24 * 3600
    lc = gta.lightcurve(src_name,
                        time_bins=list(LCbins),
                        free_radius=3.0,
                        use_scaled_srcmap=True,
                        multithread=False,
                        shape_ts_threshold=100)
Ejemplo n.º 7
0
class ExtensionFit:
    def __init__(self, configFile):

        self.gta = GTAnalysis(configFile, logging={'verbosity': 3})
        self.target = None
        self.targetRadius = None
        self.distance = None
        self.catalog = fits.getdata('/users-data/mfalxa/code/gll_psch_v13.fit',
                                    1)

    def setSourceName(self, sourceObject, newName):
        self.gta.delete_source(sourceObject['name'])
        self.gta.add_source(newName, sourceObject)

    ''' INITIALIZE '''

    def initialize(self, sizeROI, rInner, addToROI, TSMin, debug):

        self.gta.setup()
        if self.gta.config['selection']['emin'] >= 10000:
            self.gta.set_parameter('galdiff', 'Scale', 30000)

        if debug == True:
            self.gta.make_plots('startAll')
            self.gta.residmap(prefix='startAll', make_plots=True)

        # Get model source names
        sourceList = self.gta.get_sources(exclude=['isodiff', 'galdiff'])

        # Delete sources unassociated with TS < 50
        for i in range(len(sourceList)):
            if sourceList[i]['catalog']['TS_value'] < TSMin and self.catalog[
                    'CLASS'][self.catalog['Source_Name'] == sourceList[i]
                             ['name']][0] == '':
                self.gta.delete_source(sourceList[i]['name'])

        closests = self.gta.get_sources(distance=rInner,
                                        exclude=['isodiff', 'galdiff'])

        # Delete all unidentified sources
        for i in range(len(closests)):
            if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i]
                                     ['name']][0].isupper() == False:
                self.gta.delete_source(closests[i]['name'])
            if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i]
                                     ['name']][0] == 'SFR':
                self.target = closests[i]
                self.setSourceName(self.target, 'TESTSOURCE')

# If debug, save ROI and make plots
        if debug == True:
            self.gta.write_roi('startModel')
            self.gta.residmap(prefix='start', make_plots=True)
            self.gta.make_plots('start')

        # Optmize spectral parameters for sources with npred > 1
        self.gta.optimize(npred_threshold=1, skip=['isodiff'])

        # Get model source names
        sourceList = self.gta.get_sources(distance=sizeROI + addToROI,
                                          square=True,
                                          exclude=['isodiff', 'galdiff'])

        # Iterate source localizing on source list
        for i in range(len(sourceList)):
            if sourceList[i].extended == False:
                self.gta.localize(sourceList[i]['name'],
                                  write_fits=False,
                                  write_npy=False,
                                  update=True)

        # Free sources within ROI size + extra distance from center
        self.gta.free_sources(distance=sizeROI + addToROI, square=True)

        # Re-optimize ROI
        self.gta.optimize(skip=['isodiff'])

        # Save and make plots if debug
        if debug == True:
            self.gta.write_roi('modelInitialized')
            self.gta.residmap(prefix='initialized', make_plots=True)
            self.gta.make_plots('initialized')

        # Lock sources
        self.gta.free_sources(free=False)

    ''' OUTER REGION '''
    def outerRegionAnalysis(self, sizeROI, rInner, sqrtTsThreshold,
                            minSeparation, debug):

        self.gta.free_sources(distance=sizeROI,
                              pars='norm',
                              square=True,
                              free=True)
        self.gta.free_sources(distance=rInner, free=False)
        self.gta.free_source('galdiff', free=True)
        self.gta.free_source('isodiff', free=False)

        # Seek new sources until none are found
        sourceModel = {
            'SpectrumType': 'PowerLaw',
            'Index': 2.0,
            'Scale': 30000,
            'Prefactor': 1.e-15,
            'SpatialModel': 'PointSource'
        }
        newSources = self.gta.find_sources(sqrt_ts_threshold=sqrtTsThreshold,
                                           min_separation=minSeparation,
                                           model=sourceModel,
                                           **{
                                               'search_skydir':
                                               self.gta.roi.skydir,
                                               'search_minmax_radius':
                                               [rInner, sizeROI]
                                           })

        if len(newSources) > 0:
            for i in range(len(newSources)):
                if newSources['sources'][i]['ts'] > 100.:
                    self.gta.set_source_spectrum(
                        newSources['sources'][i]['name'],
                        spectrum_type='LogParabola')
                    self.gta.free_source(newSources['sources'][i]['name'])
                    self.gta.fit()
                    self.gta.free_source(newSources['sources'][i]['name'],
                                         free=False)

        # Optimize all ROI
        self.gta.optimize(skip=['isodiff'])

        # Save sources found
        if debug == True:
            self.gta.residmap(prefix='outer', make_plots=True)
            self.gta.write_roi('outerAnalysisROI')
            self.gta.make_plots('outer')

    ''' INNER REGION '''

    def innerRegionAnalysis(self, sizeROI, rInner, maxIter, sqrtTsThreshold,
                            minSeparation, dmMin, TSm1Min, TSextMin, debug):

        self.gta.free_sources(distance=sizeROI, square=True, free=False)
        self.gta.free_sources(distance=rInner, free=True, exclude=['isodiff'])

        # Keep closest source if identified with star forming region in catalog or look for new source closest to center within Rinner
        if self.target != None:
            print('Closest source identified with star forming region : ',
                  self.target['name'])
            self.gta.set_source_morphology('TESTSOURCE',
                                           **{'spatial_model': 'PointSource'})
        else:
            closeSources = self.gta.find_sources(sqrt_ts_threshold=2.,
                                                 min_separation=minSeparation,
                                                 max_iter=1,
                                                 **{
                                                     'search_skydir':
                                                     self.gta.roi.skydir,
                                                     'search_minmax_radius':
                                                     [0., rInner]
                                                 })
            dCenter = np.array([])
            for i in range(len(closeSources['sources'])):
                dCenter = np.append(
                    dCenter,
                    self.gta.roi.skydir.separation(
                        closeSources['sources'][i].skydir).value)
            self.target = closeSources['sources'][np.argmin(dCenter)]
            print('Target name : ', self.target['name'])
            self.setSourceName(self.target, 'TESTSOURCE')
            for i in [
                    x for x in range(len(closeSources['sources']))
                    if x != (np.argmin(dCenter))
            ]:
                self.gta.delete_source(closeSources['sources'][i]['name'])
            self.gta.optimize(skip=['isodiff'])

        # Initialize n sources array
        nSources = []

        # Save ROI without extension fit
        self.gta.write_roi('nSourcesFit')

        if debug == True:
            self.gta.make_plots('innerInit')
            self.gta.residmap(prefix='innerInit', make_plots=True)

        # Test for extension
        extensionTest = self.gta.extension('TESTSOURCE',
                                           make_plots=True,
                                           write_npy=debug,
                                           write_fits=debug,
                                           spatial_model='RadialDisk',
                                           update=True,
                                           free_background=True,
                                           fit_position=True)
        extLike = extensionTest['loglike_ext']
        TSext = extensionTest['ts_ext']
        print('TSext : ', TSext)
        extAIC = 2 * (len(self.gta.get_free_param_vector()) -
                      self.gta._roi_data['loglike'])
        self.gta.write_roi('extFit')

        if debug == True:
            self.gta.residmap(prefix='ext0', make_plots=True)
            self.gta.make_plots('ext0')

        self.gta.load_roi('nSourcesFit', reload_sources=True)

        for i in range(1, maxIter + 1):

            # Test for n point sources
            nSourcesTest = self.gta.find_sources(
                sources_per_iter=1,
                sqrt_ts_threshold=sqrtTsThreshold,
                min_separation=minSeparation,
                max_iter=1,
                **{
                    'search_skydir': self.gta.roi.skydir,
                    'search_minmax_radius': [0., rInner]
                })

            if len(nSourcesTest['sources']) > 0:

                if nSourcesTest['sources'][0]['ts'] > 100.:
                    self.gta.set_source_spectrum(
                        nSourcesTest['sources'][0]['name'],
                        spectrum_type='LogParabola')
                    self.gta.free_source(nSourcesTest['sources'][0]['name'])
                    self.gta.fit()
                    self.gta.free_source(nSourcesTest['sources'][0]['name'],
                                         free=False)

                if debug == True:
                    self.gta.make_plots('nSources' + str(i))

                nSources.append(nSourcesTest['sources'])
                self.gta.localize(nSourcesTest['sources'][0]['name'],
                                  write_npy=debug,
                                  write_fits=debug,
                                  update=True)
                nAIC = 2 * (len(self.gta.get_free_param_vector()) -
                            self.gta._roi_data['loglike'])
                self.gta.free_source(nSourcesTest['sources'][0]['name'],
                                     free=True)
                self.gta.residmap(prefix='nSources' + str(i), make_plots=True)
                self.gta.write_roi('n1SourcesFit')

                # Estimate Akaike Information Criterion difference between both models
                dm = extAIC - nAIC
                print('AIC difference between both models = ', dm)

                # Estimate TS_m+1
                extensionTestPlus = self.gta.extension(
                    'TESTSOURCE',
                    make_plots=True,
                    write_npy=debug,
                    write_fits=debug,
                    spatial_model='RadialDisk',
                    update=True,
                    free_background=True,
                    fit_position=True)
                TSm1 = 2 * (extensionTestPlus['loglike_ext'] - extLike)
                print('TSm+1 = ', TSm1)

                if debug == True:
                    self.gta.residmap(prefix='ext' + str(i), make_plots=True)
                    self.gta.make_plots('ext' + str(i))

                if dm < dmMin and TSm1 < TSm1Min:
                    self.gta.load_roi('extFit', reload_sources=True)
                    break
                else:

                    # Set extension test to current state and save current extension fit ROI and load previous nSources fit ROI
                    extensionTest = extensionTestPlus
                    extLike = extensionTestPlus['loglike_ext']
                    TSext = extensionTestPlus['ts_ext']
                    print('TSext : ', TSext)
                    extAIC = 2 * (len(self.gta.get_free_param_vector()) -
                                  self.gta._roi_data['loglike'])
                    self.gta.write_roi('extFit')
                    self.gta.load_roi('n1SourcesFit', reload_sources=True)
                    self.gta.write_roi('nSourcesFit')

            else:
                if TSext > TSextMin:
                    self.gta.load_roi('extFit', reload_sources=True)
                    break
                else:
                    self.gta.load_roi('nSourcesFit', reload_sources=True)
                    break

        self.gta.fit()

        # Get source radius depending on spatial model
        endSources = self.gta.get_sources()
        for i in range(len(endSources)):
            if endSources[i]['name'] == 'TESTSOURCE':
                self.target = endSources[i]
                self.distance = self.gta.roi.skydir.separation(
                    endSources[i].skydir).value
                if endSources[i].extended == True:
                    self.targetRadius = endSources[i]['SpatialWidth']
                else:
                    self.targetRadius = endSources[i]['pos_r95']

    ''' CHECK OVERLAP '''

    def overlapDisk(self, rInner, radiusCatalog):

        print('Target radius : ', self.targetRadius)

        # Check radius sizes
        if radiusCatalog < self.targetRadius:
            r = float(radiusCatalog)
            R = float(self.targetRadius)
        else:
            r = float(self.targetRadius)
            R = float(radiusCatalog)

        # Estimating overlapping area
        d = self.distance
        print('Distance from center : ', d)

        if d < (r + R):
            if R < (r + d):
                area = r**2 * np.arccos(
                    (d**2 + r**2 - R**2) / (2 * d * r)) + R**2 * np.arccos(
                        (d**2 + R**2 - r**2) / (2 * d * R)) - 0.5 * np.sqrt(
                            (-d + r + R) * (d + r - R) * (d - r + R) *
                            (d + r + R))
                overlap = round((area / (np.pi * r**2)) * 100, 2)
            else:
                area = np.pi * r**2
                overlap = 100.0
        else:
            area = 0.
            overlap = 0.

        print('Overlapping surface : ', area)
        print('Overlap : ', overlap)

        if overlap > 68. and self.distance < rInner:
            associated = True
        else:
            associated = False

        return associated

    ''' CHECK UPPER LIMIT '''

    def upperLimit(self, name, radius):
        sourceModel = {
            'SpectrumType': 'PowerLaw',
            'Index': 2.0,
            'Scale': 30000,
            'Prefactor': 1.e-15,
            'SpatialModel': 'RadialDisk',
            'SpatialWidth': radius,
            'glon': self.gta.config['selection']['glon'],
            'glat': self.gta.config['selection']['glat']
        }
        self.gta.add_source(name, sourceModel, free=True)
        self.gta.fit()
        self.gta.residmap(prefix='upperLimit', make_plots=True)
        print('Upper limit : ', self.gta.get_sources()[0]['flux_ul95'])
Ejemplo n.º 8
0
find = gta.find_sources(model=model, sqrt_ts_threshold=5, min_separation=0.5, multithread = True)

fit_res = gta.optimize()
fit_res = gta.fit()

#write output
gta.write_roi('fit_srcfind')



#localize new sources and add to ds9 region file with error circles

for s in gta.roi.sources:
        if s.name != 'isodiff' and s.name != 'galdiff' and s['ts']>25 and s['offset']<3.:
                soi = s.name
                loc=gta.localize(soi, update=True, free_radius=1)

fit_res = gta.optimize()

gta.write_roi('fit_srcfind_loc')



#check if there is a source close to the target position, if not put a test source and fit it

srcname = NAME

if gta.roi.sources[0]._data['offset']>gta.roi.sources[0]._data['pos_r99']:
    print '# No source consistent with target position after localization, creating and fitting test source... #'
    gta.add_source(srcname,{ 'ra' : srcRA, 'dec' : srcDec ,'SpectrumType' : 'PowerLaw', 'Index' : 2.2,'Scale' : 1000, 'Prefactor' : 5.0E-12,'SpatialModel' : 'PointSource' })
    gta.free_source(srcname)
Ejemplo n.º 9
0
def main():
        
    usage = "usage: %(prog)s [config file]"
    description = "Run fermipy analysis chain."
    parser = argparse.ArgumentParser(usage=usage,description=description)

    parser.add_argument('--config', default = 'sample_config.yaml')
    parser.add_argument('--source', default = None)

    args = parser.parse_args()
    gta = GTAnalysis(args.config,logging={'verbosity' : 3},
                     fileio={'workdir_regex' : '\.xml$|\.npy$'})

    gta.setup()

    names = [s.name for s in gta.roi.sources if not s.diffuse]
    gta.reload_sources(names)
    
    sqrt_ts_threshold=3
    
    model0 = { 'SpatialModel' : 'PointSource', 'Index' : 1.5 }
    model1 = { 'SpatialModel' : 'PointSource', 'Index' : 2.0 }
    model2 = { 'SpatialModel' : 'PointSource', 'Index' : 2.5 }
    #src_name = gta.roi.sources[0].name
    if args.source is None:
        src_name = gta.config['selection']['target']
    else:
        src_name = args.source
        
    # -----------------------------------
    # Fit the Baseline Model
    # -----------------------------------

    # Get a reasonable starting point for the spectral model
    gta.free_source(src_name)
    gta.fit()
    gta.free_source(src_name,False)

    gta.optimize()
    
    # Localize 3FGL sources
    for s in gta.roi.sources:

        if not s['SpatialModel'] == 'PointSource':
            continue

        if s['offset'] < 0.5 or s['ts'] < 25.:
            continue

        if s['offset_roi_edge'] > -0.1:
            continue
        
        gta.localize(s.name,nstep=5,dtheta_max=0.5,update=True,
                     prefix='base')

        gta.free_source(s.name,False)

    gta.tsmap('base',model=model1)

    # Look for new point sources outside the inner 1.0 deg

    gta.find_sources('base',model=model1,
                     search_skydir=gta.roi.skydir,
                     max_iter=5,min_separation=0.5,
                     sqrt_ts_threshold=sqrt_ts_threshold,
                     search_minmax_radius=[1.0,None])
    gta.optimize()

    gta.print_roi()

    gta.write_roi('base')

    # -----------------------------------
    # Pass 0 - Source at Nominal Position
    # -----------------------------------

    fit_region(gta,'fit0',src_name)

    # -------------------------------------
    # Pass 1 - Source at Localized Position
    # -------------------------------------

    gta.localize(src_name,nstep=5,dtheta_max=0.5,update=True,
                 prefix='fit1')

    fit_region(gta,'fit1',src_name)
    fit_halo(gta,'fit1',src_name)
    gta.load_roi('fit1')

    # -------------------------------------
    # Pass 2 - 2+ Point Sources
    # -------------------------------------

    srcs = []

    # Fit up to 4 sources
    for i in range(2,6):

        srcs_fit = gta.find_sources('fit%i'%i,
                                    search_skydir=gta.roi.skydir,
                                    max_iter=1,
                                    sources_per_iter=1,
                                    sqrt_ts_threshold=3,
                                    min_separation=0.5,
                                    search_minmax_radius=[None,1.0])

        if len(srcs_fit['sources']) == 0:
            break

        srcs += srcs_fit['sources']
        best_fit_idx = i
        
        gta.localize(src_name,nstep=5,dtheta_max=0.4,
                     update=True,prefix='fit%i'%i)

        # Relocalize new sources
        for s in sorted(srcs, key=lambda t: t['ts'],reverse=True):        
            gta.localize(s.name,nstep=5,dtheta_max=0.4,
                         update=True,prefix='fit%i'%i)

        fit_region(gta,'fit%i'%i,src_name)
        fit_halo(gta,'fit%i'%i,src_name)

        gta.load_roi('fit%i'%i)
        
    new_source_data = []
    for s in srcs:
        src_data = gta.roi[s.name].data
        new_source_data.append(copy.deepcopy(src_data))

    np.save(os.path.join(gta.workdir,'new_source_data.npy'),
            new_source_data)
Ejemplo n.º 10
0
    # Localize 3FGL sources
    for s in gta.roi.sources:

        if not s['SpatialModel'] == 'PointSource':
            continue

        if s['offset'] < 0.5 or s['ts'] < 25.:
            continue

        if np.abs(s['offset_glon']) > 0.5*roiwidth-0.2:
            continue

        if np.abs(s['offset_glat']) > 0.5*roiwidth-0.2:
            continue
        
        gta.localize(s.name,nstep=5,dtheta_max=0.5,update=True,
                     prefix='base')

        gta.free_source(s.name,False)

    gta.tsmap('base',model=model1)
    #gta.tsmap('base_emin40',model=model1,erange=[4.0,5.5])

    # Look for new point sources outside the inner 1.0 deg

    gta.find_sources('base',model=model1,
                     search_skydir=gta.roi.skydir,
                     max_iter=4,min_separation=0.5,
                     sqrt_ts_threshold=sqrt_ts_threshold,
                     search_minmax_radius=[1.0,None])
    gta.optimize()
Ejemplo n.º 11
0
def main():

    usage = "usage: %(prog)s [config file]"
    description = "Run fermipy analysis chain."
    parser = argparse.ArgumentParser(usage=usage, description=description)

    parser.add_argument('--config', default='sample_config.yaml')
    parser.add_argument('--source', default=None)

    args = parser.parse_args()
    gta = GTAnalysis(args.config,
                     logging={'verbosity': 3},
                     fileio={'workdir_regex': '\.xml$|\.npy$'})

    model0 = {'SpatialModel': 'PointSource', 'Index': 1.5}
    model1 = {'SpatialModel': 'PointSource', 'Index': 2.0}
    model2 = {'SpatialModel': 'PointSource', 'Index': 2.7}

    src_name = gta.config['selection']['target']

    gta.setup(overwrite=True)
    gta.free_sources(False)
    gta.print_roi()
    gta.optimize()
    gta.print_roi()

    exclude = []

    # Localize all point sources
    for s in sorted(gta.roi.sources, key=lambda t: t['ts'], reverse=True):
        #    for s in gta.roi.sources:

        if not s['SpatialModel'] == 'PointSource':
            continue
        if s['offset_roi_edge'] > -0.1:
            continue

        if s.name in exclude:
            continue
        if not '3FGL' in s.name:
            continue
        if s.name == src_name:
            continue

        gta.localize(s.name,
                     nstep=5,
                     dtheta_max=0.5,
                     update=True,
                     prefix='base',
                     make_plots=True)

    gta.optimize()
    gta.print_roi()

    gta.write_roi('base_roi', make_plots=True)

    exclude = [src_name]
    if not 'carina_2' in exclude:
        exclude += ['carina_2']
    if not 'carina_3' in exclude:
        exclude += ['carina_3']

    gta.tsmap('base', model=model0, make_plots=True, exclude=exclude)
    gta.residmap('base', model=model0, make_plots=True, exclude=exclude)
    gta.tsmap('base', model=model1, make_plots=True, exclude=exclude)
    gta.residmap('base', model=model1, make_plots=True, exclude=exclude)
    gta.tsmap('base', model=model2, make_plots=True, exclude=exclude)
    gta.residmap('base', model=model2, make_plots=True, exclude=exclude)

    gta.find_sources(sqrt_ts_threshold=5.0)
    gta.optimize()
    gta.print_roi()
    gta.print_params()

    gta.free_sources(skydir=gta.roi.skydir, distance=1.0, pars='norm')
    gta.fit()
    gta.print_roi()
    gta.print_params()

    gta.write_roi('fit0_roi', make_plots=True)

    m = gta.tsmap('fit0', model=model0, make_plots=True, exclude=exclude)
    gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom')
    gta.residmap('fit0', model=model0, make_plots=True, exclude=exclude)
    gta.tsmap('fit0', model=model1, make_plots=True, exclude=exclude)
    gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom')
    gta.residmap('fit0', model=model1, make_plots=True, exclude=exclude)
    gta.tsmap('fit0', model=model2, make_plots=True, exclude=exclude)
    gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom')
    gta.residmap('fit0', model=model2, make_plots=True, exclude=exclude)

    gta.sed(src_name, prefix='fit0', make_plots=True, free_radius=1.0)

    gta.free_source(src_name)
    gta.fit(reoptimize=True)
    gta.print_roi()
    gta.print_params()

    gta.write_roi('fit1_roi', make_plots=True)