Ejemplo n.º 1
0
def run_analysis(config):
    print('Running analysis...')

    gta = GTAnalysis(config)
    gta.setup()
    gta.optimize()

    gta.print_roi()

    # Localize and generate SED for first source in ROI
    srcname = gta.roi.sources[0].name

    gta.free_source(srcname)
    gta.fit()

    gta.localize(srcname)
    gta.sed(srcname)

    gta.write_roi('roi', make_plots=True)
    gta.tsmap(make_plots=True)
    gta.residmap(make_plots=True)
Ejemplo n.º 2
0
def run_analysis(config):
    print('Running analysis...')

    gta = GTAnalysis(config)
    gta.setup()
    gta.optimize()

    gta.print_roi()

    # Localize and generate SED for first source in ROI
    srcname = gta.roi.sources[0].name

    gta.free_source(srcname)
    gta.fit()

    gta.localize(srcname)
    gta.sed(srcname)

    gta.write_roi('roi', make_plots=True)
    gta.tsmap(make_plots=True)
    gta.residmap(make_plots=True)
Ejemplo n.º 3
0
class ExtensionFit:
    def __init__(self, configFile):

        self.gta = GTAnalysis(configFile, logging={'verbosity': 3})
        self.target = None
        self.targetRadius = None
        self.distance = None
        self.catalog = fits.getdata('/users-data/mfalxa/code/gll_psch_v13.fit',
                                    1)

    def setSourceName(self, sourceObject, newName):
        self.gta.delete_source(sourceObject['name'])
        self.gta.add_source(newName, sourceObject)

    ''' INITIALIZE '''

    def initialize(self, sizeROI, rInner, addToROI, TSMin, debug):

        self.gta.setup()
        if self.gta.config['selection']['emin'] >= 10000:
            self.gta.set_parameter('galdiff', 'Scale', 30000)

        if debug == True:
            self.gta.make_plots('startAll')
            self.gta.residmap(prefix='startAll', make_plots=True)

        # Get model source names
        sourceList = self.gta.get_sources(exclude=['isodiff', 'galdiff'])

        # Delete sources unassociated with TS < 50
        for i in range(len(sourceList)):
            if sourceList[i]['catalog']['TS_value'] < TSMin and self.catalog[
                    'CLASS'][self.catalog['Source_Name'] == sourceList[i]
                             ['name']][0] == '':
                self.gta.delete_source(sourceList[i]['name'])

        closests = self.gta.get_sources(distance=rInner,
                                        exclude=['isodiff', 'galdiff'])

        # Delete all unidentified sources
        for i in range(len(closests)):
            if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i]
                                     ['name']][0].isupper() == False:
                self.gta.delete_source(closests[i]['name'])
            if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i]
                                     ['name']][0] == 'SFR':
                self.target = closests[i]
                self.setSourceName(self.target, 'TESTSOURCE')

# If debug, save ROI and make plots
        if debug == True:
            self.gta.write_roi('startModel')
            self.gta.residmap(prefix='start', make_plots=True)
            self.gta.make_plots('start')

        # Optmize spectral parameters for sources with npred > 1
        self.gta.optimize(npred_threshold=1, skip=['isodiff'])

        # Get model source names
        sourceList = self.gta.get_sources(distance=sizeROI + addToROI,
                                          square=True,
                                          exclude=['isodiff', 'galdiff'])

        # Iterate source localizing on source list
        for i in range(len(sourceList)):
            if sourceList[i].extended == False:
                self.gta.localize(sourceList[i]['name'],
                                  write_fits=False,
                                  write_npy=False,
                                  update=True)

        # Free sources within ROI size + extra distance from center
        self.gta.free_sources(distance=sizeROI + addToROI, square=True)

        # Re-optimize ROI
        self.gta.optimize(skip=['isodiff'])

        # Save and make plots if debug
        if debug == True:
            self.gta.write_roi('modelInitialized')
            self.gta.residmap(prefix='initialized', make_plots=True)
            self.gta.make_plots('initialized')

        # Lock sources
        self.gta.free_sources(free=False)

    ''' OUTER REGION '''
    def outerRegionAnalysis(self, sizeROI, rInner, sqrtTsThreshold,
                            minSeparation, debug):

        self.gta.free_sources(distance=sizeROI,
                              pars='norm',
                              square=True,
                              free=True)
        self.gta.free_sources(distance=rInner, free=False)
        self.gta.free_source('galdiff', free=True)
        self.gta.free_source('isodiff', free=False)

        # Seek new sources until none are found
        sourceModel = {
            'SpectrumType': 'PowerLaw',
            'Index': 2.0,
            'Scale': 30000,
            'Prefactor': 1.e-15,
            'SpatialModel': 'PointSource'
        }
        newSources = self.gta.find_sources(sqrt_ts_threshold=sqrtTsThreshold,
                                           min_separation=minSeparation,
                                           model=sourceModel,
                                           **{
                                               'search_skydir':
                                               self.gta.roi.skydir,
                                               'search_minmax_radius':
                                               [rInner, sizeROI]
                                           })

        if len(newSources) > 0:
            for i in range(len(newSources)):
                if newSources['sources'][i]['ts'] > 100.:
                    self.gta.set_source_spectrum(
                        newSources['sources'][i]['name'],
                        spectrum_type='LogParabola')
                    self.gta.free_source(newSources['sources'][i]['name'])
                    self.gta.fit()
                    self.gta.free_source(newSources['sources'][i]['name'],
                                         free=False)

        # Optimize all ROI
        self.gta.optimize(skip=['isodiff'])

        # Save sources found
        if debug == True:
            self.gta.residmap(prefix='outer', make_plots=True)
            self.gta.write_roi('outerAnalysisROI')
            self.gta.make_plots('outer')

    ''' INNER REGION '''

    def innerRegionAnalysis(self, sizeROI, rInner, maxIter, sqrtTsThreshold,
                            minSeparation, dmMin, TSm1Min, TSextMin, debug):

        self.gta.free_sources(distance=sizeROI, square=True, free=False)
        self.gta.free_sources(distance=rInner, free=True, exclude=['isodiff'])

        # Keep closest source if identified with star forming region in catalog or look for new source closest to center within Rinner
        if self.target != None:
            print('Closest source identified with star forming region : ',
                  self.target['name'])
            self.gta.set_source_morphology('TESTSOURCE',
                                           **{'spatial_model': 'PointSource'})
        else:
            closeSources = self.gta.find_sources(sqrt_ts_threshold=2.,
                                                 min_separation=minSeparation,
                                                 max_iter=1,
                                                 **{
                                                     'search_skydir':
                                                     self.gta.roi.skydir,
                                                     'search_minmax_radius':
                                                     [0., rInner]
                                                 })
            dCenter = np.array([])
            for i in range(len(closeSources['sources'])):
                dCenter = np.append(
                    dCenter,
                    self.gta.roi.skydir.separation(
                        closeSources['sources'][i].skydir).value)
            self.target = closeSources['sources'][np.argmin(dCenter)]
            print('Target name : ', self.target['name'])
            self.setSourceName(self.target, 'TESTSOURCE')
            for i in [
                    x for x in range(len(closeSources['sources']))
                    if x != (np.argmin(dCenter))
            ]:
                self.gta.delete_source(closeSources['sources'][i]['name'])
            self.gta.optimize(skip=['isodiff'])

        # Initialize n sources array
        nSources = []

        # Save ROI without extension fit
        self.gta.write_roi('nSourcesFit')

        if debug == True:
            self.gta.make_plots('innerInit')
            self.gta.residmap(prefix='innerInit', make_plots=True)

        # Test for extension
        extensionTest = self.gta.extension('TESTSOURCE',
                                           make_plots=True,
                                           write_npy=debug,
                                           write_fits=debug,
                                           spatial_model='RadialDisk',
                                           update=True,
                                           free_background=True,
                                           fit_position=True)
        extLike = extensionTest['loglike_ext']
        TSext = extensionTest['ts_ext']
        print('TSext : ', TSext)
        extAIC = 2 * (len(self.gta.get_free_param_vector()) -
                      self.gta._roi_data['loglike'])
        self.gta.write_roi('extFit')

        if debug == True:
            self.gta.residmap(prefix='ext0', make_plots=True)
            self.gta.make_plots('ext0')

        self.gta.load_roi('nSourcesFit', reload_sources=True)

        for i in range(1, maxIter + 1):

            # Test for n point sources
            nSourcesTest = self.gta.find_sources(
                sources_per_iter=1,
                sqrt_ts_threshold=sqrtTsThreshold,
                min_separation=minSeparation,
                max_iter=1,
                **{
                    'search_skydir': self.gta.roi.skydir,
                    'search_minmax_radius': [0., rInner]
                })

            if len(nSourcesTest['sources']) > 0:

                if nSourcesTest['sources'][0]['ts'] > 100.:
                    self.gta.set_source_spectrum(
                        nSourcesTest['sources'][0]['name'],
                        spectrum_type='LogParabola')
                    self.gta.free_source(nSourcesTest['sources'][0]['name'])
                    self.gta.fit()
                    self.gta.free_source(nSourcesTest['sources'][0]['name'],
                                         free=False)

                if debug == True:
                    self.gta.make_plots('nSources' + str(i))

                nSources.append(nSourcesTest['sources'])
                self.gta.localize(nSourcesTest['sources'][0]['name'],
                                  write_npy=debug,
                                  write_fits=debug,
                                  update=True)
                nAIC = 2 * (len(self.gta.get_free_param_vector()) -
                            self.gta._roi_data['loglike'])
                self.gta.free_source(nSourcesTest['sources'][0]['name'],
                                     free=True)
                self.gta.residmap(prefix='nSources' + str(i), make_plots=True)
                self.gta.write_roi('n1SourcesFit')

                # Estimate Akaike Information Criterion difference between both models
                dm = extAIC - nAIC
                print('AIC difference between both models = ', dm)

                # Estimate TS_m+1
                extensionTestPlus = self.gta.extension(
                    'TESTSOURCE',
                    make_plots=True,
                    write_npy=debug,
                    write_fits=debug,
                    spatial_model='RadialDisk',
                    update=True,
                    free_background=True,
                    fit_position=True)
                TSm1 = 2 * (extensionTestPlus['loglike_ext'] - extLike)
                print('TSm+1 = ', TSm1)

                if debug == True:
                    self.gta.residmap(prefix='ext' + str(i), make_plots=True)
                    self.gta.make_plots('ext' + str(i))

                if dm < dmMin and TSm1 < TSm1Min:
                    self.gta.load_roi('extFit', reload_sources=True)
                    break
                else:

                    # Set extension test to current state and save current extension fit ROI and load previous nSources fit ROI
                    extensionTest = extensionTestPlus
                    extLike = extensionTestPlus['loglike_ext']
                    TSext = extensionTestPlus['ts_ext']
                    print('TSext : ', TSext)
                    extAIC = 2 * (len(self.gta.get_free_param_vector()) -
                                  self.gta._roi_data['loglike'])
                    self.gta.write_roi('extFit')
                    self.gta.load_roi('n1SourcesFit', reload_sources=True)
                    self.gta.write_roi('nSourcesFit')

            else:
                if TSext > TSextMin:
                    self.gta.load_roi('extFit', reload_sources=True)
                    break
                else:
                    self.gta.load_roi('nSourcesFit', reload_sources=True)
                    break

        self.gta.fit()

        # Get source radius depending on spatial model
        endSources = self.gta.get_sources()
        for i in range(len(endSources)):
            if endSources[i]['name'] == 'TESTSOURCE':
                self.target = endSources[i]
                self.distance = self.gta.roi.skydir.separation(
                    endSources[i].skydir).value
                if endSources[i].extended == True:
                    self.targetRadius = endSources[i]['SpatialWidth']
                else:
                    self.targetRadius = endSources[i]['pos_r95']

    ''' CHECK OVERLAP '''

    def overlapDisk(self, rInner, radiusCatalog):

        print('Target radius : ', self.targetRadius)

        # Check radius sizes
        if radiusCatalog < self.targetRadius:
            r = float(radiusCatalog)
            R = float(self.targetRadius)
        else:
            r = float(self.targetRadius)
            R = float(radiusCatalog)

        # Estimating overlapping area
        d = self.distance
        print('Distance from center : ', d)

        if d < (r + R):
            if R < (r + d):
                area = r**2 * np.arccos(
                    (d**2 + r**2 - R**2) / (2 * d * r)) + R**2 * np.arccos(
                        (d**2 + R**2 - r**2) / (2 * d * R)) - 0.5 * np.sqrt(
                            (-d + r + R) * (d + r - R) * (d - r + R) *
                            (d + r + R))
                overlap = round((area / (np.pi * r**2)) * 100, 2)
            else:
                area = np.pi * r**2
                overlap = 100.0
        else:
            area = 0.
            overlap = 0.

        print('Overlapping surface : ', area)
        print('Overlap : ', overlap)

        if overlap > 68. and self.distance < rInner:
            associated = True
        else:
            associated = False

        return associated

    ''' CHECK UPPER LIMIT '''

    def upperLimit(self, name, radius):
        sourceModel = {
            'SpectrumType': 'PowerLaw',
            'Index': 2.0,
            'Scale': 30000,
            'Prefactor': 1.e-15,
            'SpatialModel': 'RadialDisk',
            'SpatialWidth': radius,
            'glon': self.gta.config['selection']['glon'],
            'glat': self.gta.config['selection']['glat']
        }
        self.gta.add_source(name, sourceModel, free=True)
        self.gta.fit()
        self.gta.residmap(prefix='upperLimit', make_plots=True)
        print('Upper limit : ', self.gta.get_sources()[0]['flux_ul95'])
Ejemplo n.º 4
0
config['fileio']['outdir'] = cwd+'/fits'
config['fileio']['logfile'] = cwd+'/fits/fermipy.log'
config['data']['ltcube'] = cwd+'/fits/ltcube_00.fits'
config['model']['galdiff'] = path_to_conda+'/share/fermitools/refdata/fermi/galdiffuse/gll_iem_v07.fits'
config['model']['isodiff'] = path_to_conda+'/share/fermitools/refdata/fermi/galdiffuse/iso_P8R3_SOURCE_V3_v1.txt'
config['logging']['verbosity'] = 4
source = config['selection']['target']
with open(cwd+'/config_modified.yaml', 'w') as o:
    yaml.dump(config, o)
likelihoods = np.zeros((5))
gta = GTAnalysis(config='config_modified.yaml')
gta.setup()
model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}

for i in range(1,6):
    gta.optimize()
    gta.free_sources(free=False)
    gta.free_source(source)
    gta.free_source('galdiff')
    gta.free_source('isodiff')
    gta.free_sources(distance=3, pars='norm')
    gta.free_sources(minmax_ts=[100, None], pars='norm')
    gta.fit(optimizer='NEWMINUIT', reoptimize=True)
    maps = gta.residmap(f'../maps/opt_alternating{i}', model=model, make_plots=True)
    maps = gta.tsmap(f'../maps/opt_alternating_{i}', model=model, make_plots=True)
    gta.write_roi(f'opt_{i}', make_plots=True)
    likelihoods[i-1] = - gta.like()


np.savetxt('optimization_process_likes_alternating.dat', likelihoods)
Ejemplo n.º 5
0
def FGES_BinnedAnalysis(prefix, ANALYSISDIR, numsources, xmlsources, spectrum,
                        spectrumpoints, spectrumpointsUL, spectrum_mev_or_erg,
                        spectrum_mev_or_tev, configfile):

    ANALYSISDIR = ANALYSISDIR + prefix + '/'
    i = numsources  #number of sources
    sources_names = ''
    for x in range(0, i):
        sources_names += str(xmlsources[x])

    #Run the likelihood analysis up to doing the fit
    gta = GTAnalysis(ANALYSISDIR + configfile, logging={'verbosity': 3})
    gta.setup()

    #Print the pre likelihood fit parameters
    gta.print_roi()
    for x in range(0, i):
        print(gta.roi[xmlsources[x]])

    #Do an initial optimization of parameters
    gta.optimize()

    gta.print_roi()

    #Prepare to get the likelihood
    #Free the normalizations of sources within 7 degrees of the center of the field of view
    gta.free_sources(distance=7.0, pars='norm')
    gta.free_source('galdiff')
    gta.free_source('isodiff')
    for x in range(0, i):
        gta.free_source(xmlsources[x])

    #LIKELIHOOD ANALYSIS
    fit_results = gta.fit()

    #print out and return the results
    print('Fit Quality: ', fit_results['fit_quality'])
    for x in range(0, i):
        print(gta.roi[xmlsources[x]])
    gta.write_roi(sources_names + 'fit')

    #RESIDUAL MAP
    model = {'Index': 2.0, 'SpatialModel': 'PointSource'}
    maps = gta.residmap('residual', model=model, make_plots=True)

    # Generate residual map with source of interest removed from the model
    model_nosource = {'Index': 2.0, 'SpatialModel': 'PointSource'}
    maps_nosource = gta.residmap('residual_wsource',
                                 model=model_nosource,
                                 exclude=xmlsources,
                                 make_plots=True)

    #TS Map
    tsmap = gta.tsmap('tsmap',
                      model={
                          'SpatialModel': 'PointSource',
                          'Index': 2.0
                      },
                      exclude=xmlsources,
                      make_plots=True)
    tsmap_wSNR = gta.tsmap('tsmap_wSNR',
                           model={
                               'SpatialModel': 'PointSource',
                               'Index': 2.0
                           },
                           make_plots=True)

    #PLOT SEDs
    for x in range(0, i):
        c = np.load('10to500gev/' + sources_names + 'fit.npy').flat[0]
        sorted(c['sources'].keys())
        c['sources'][xmlsources[x]]['flux']
        print(c['sources'][xmlsources[x]]['param_names'][:4])
        print(c['sources'][xmlsources[x]]['param_values'][:4])
        c['sources'][xmlsources[x]]['ts']

        E = np.array(c['sources'][xmlsources[x]]['model_flux']['energies'])
        dnde = np.array(c['sources'][xmlsources[x]]['model_flux']['dnde'])
        dnde_hi = np.array(
            c['sources'][xmlsources[x]]['model_flux']['dnde_hi'])
        dnde_lo = np.array(
            c['sources'][xmlsources[x]]['model_flux']['dnde_lo'])

        if spectrum_mev_or_erg == "erg":
            suffix = 'erg'
            mult = 0.00000160218
        elif spectrum_mev_or_erg == "mev":
            suffix = 'MeV'
            mult = 1

        if spectrum_mev_or_tev == "mev":
            xaxis = 'MeV'
            denominator = 1
        elif spectrum_mev_or_tev == "tev":
            xaxis = 'TeV'
            denominator = 1000000

        if spectrum:
            plt.loglog(E, (E**2) * dnde, 'k--')
            plt.loglog(E, (E**2) * dnde_hi, 'k')
            plt.loglog(E, (E**2) * dnde_lo, 'k')
            plt.xlabel('E [MeV]')
            plt.ylabel(r'E$^2$ dN/dE [MeV cm$^{-2}$ s$^{-1}$]')
            plt.savefig('spectrum_' + xmlsources[x] + '.png')

        #GET SED POINTS
        if spectrumpoints:
            sed = gta.sed(xmlsources[x], make_plots=True)
            #sed = gta.sed(xmlsource,prefix=xmlsource + 'spectrum',loge_bins=)
            src = gta.roi[xmlsources[x]]
            #Plot without upper limits
            plt.loglog(E, (E**2) * dnde, 'k--')
            plt.loglog(E, (E**2) * dnde_hi, 'k')
            plt.loglog(E, (E**2) * dnde_lo, 'k')
            plt.errorbar(np.array(sed['e_ctr']),
                         sed['e2dnde'],
                         yerr=sed['e2dnde_err'],
                         fmt='o')
            plt.xlabel('E [MeV]')
            plt.ylabel(r'E$^{2}$ dN/dE [MeV cm$^{-2}$ s$^{-1}$]')
            #plt.show()
            plt.savefig('spectrumpoints_' + xmlsources[x] + '.png')
            #Plot with upper limits, last 5 points
            plt.loglog(E, (E**2) * dnde, 'k--')
            plt.loglog(E, (E**2) * dnde_hi, 'k')
            plt.loglog(E, (E**2) * dnde_lo, 'k')
            plt.errorbar(sed['e_ctr'][:-5],
                         sed['e2dnde'][:-5],
                         yerr=sed['e2dnde_err'][:-5],
                         fmt='o')
            plt.errorbar(np.array(sed['e_ctr'][-5:]),
                         sed['e2dnde_ul95'][-5:],
                         yerr=0.2 * sed['e2dnde_ul95'][-5:],
                         fmt='o',
                         uplims=True)
            plt.xlabel('E [MeV]')
            plt.ylabel(r'E$^{2}$ dN/dE [MeV cm$^{-2}$ s$^{-1}$]')
            plt.savefig('spectrumpointsUL_' + xmlsources[x] + '.png')
        plt.clf()
Ejemplo n.º 6
0
def main():

    usage = "usage: %(prog)s [config file]"
    description = "Run fermipy analysis chain."
    parser = argparse.ArgumentParser(usage=usage, description=description)

    parser.add_argument('--config', default='sample_config.yaml')
    parser.add_argument('--source', default=None)

    args = parser.parse_args()
    gta = GTAnalysis(args.config,
                     logging={'verbosity': 3},
                     fileio={'workdir_regex': '\.xml$|\.npy$'})

    model0 = {'SpatialModel': 'PointSource', 'Index': 1.5}
    model1 = {'SpatialModel': 'PointSource', 'Index': 2.0}
    model2 = {'SpatialModel': 'PointSource', 'Index': 2.7}

    src_name = gta.config['selection']['target']

    gta.setup(overwrite=True)
    gta.free_sources(False)
    gta.print_roi()
    gta.optimize()
    gta.print_roi()

    exclude = []

    # Localize all point sources
    for s in sorted(gta.roi.sources, key=lambda t: t['ts'], reverse=True):
        #    for s in gta.roi.sources:

        if not s['SpatialModel'] == 'PointSource':
            continue
        if s['offset_roi_edge'] > -0.1:
            continue

        if s.name in exclude:
            continue
        if not '3FGL' in s.name:
            continue
        if s.name == src_name:
            continue

        gta.localize(s.name,
                     nstep=5,
                     dtheta_max=0.5,
                     update=True,
                     prefix='base',
                     make_plots=True)

    gta.optimize()
    gta.print_roi()

    gta.write_roi('base_roi', make_plots=True)

    exclude = [src_name]
    if not 'carina_2' in exclude:
        exclude += ['carina_2']
    if not 'carina_3' in exclude:
        exclude += ['carina_3']

    gta.tsmap('base', model=model0, make_plots=True, exclude=exclude)
    gta.residmap('base', model=model0, make_plots=True, exclude=exclude)
    gta.tsmap('base', model=model1, make_plots=True, exclude=exclude)
    gta.residmap('base', model=model1, make_plots=True, exclude=exclude)
    gta.tsmap('base', model=model2, make_plots=True, exclude=exclude)
    gta.residmap('base', model=model2, make_plots=True, exclude=exclude)

    gta.find_sources(sqrt_ts_threshold=5.0)
    gta.optimize()
    gta.print_roi()
    gta.print_params()

    gta.free_sources(skydir=gta.roi.skydir, distance=1.0, pars='norm')
    gta.fit()
    gta.print_roi()
    gta.print_params()

    gta.write_roi('fit0_roi', make_plots=True)

    m = gta.tsmap('fit0', model=model0, make_plots=True, exclude=exclude)
    gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom')
    gta.residmap('fit0', model=model0, make_plots=True, exclude=exclude)
    gta.tsmap('fit0', model=model1, make_plots=True, exclude=exclude)
    gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom')
    gta.residmap('fit0', model=model1, make_plots=True, exclude=exclude)
    gta.tsmap('fit0', model=model2, make_plots=True, exclude=exclude)
    gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom')
    gta.residmap('fit0', model=model2, make_plots=True, exclude=exclude)

    gta.sed(src_name, prefix='fit0', make_plots=True, free_radius=1.0)

    gta.free_source(src_name)
    gta.fit(reoptimize=True)
    gta.print_roi()
    gta.print_params()

    gta.write_roi('fit1_roi', make_plots=True)