コード例 #1
0
    def detVec(prim, dirVec, exception):
        global epsilon
        reload(GeoMath)
        vec1 = GeoMath.vecNormalize(GeoMath.vecSub(list(prim.vertices()[0].point().position()), list(prim.vertices()[1].point().position())))
        vec2 = GeoMath.vecNormalize(GeoMath.vecSub(list(prim.vertices()[2].point().position()), list(prim.vertices()[1].point().position())))
        prim_normal = list(prim.normal())
        if(list(prim_normal) != [0, 1, 0]):
            # We consider that y is vertical and x horizontal
            if(math.fabs(vec1[1]) > math.fabs(vec2[1])):
                # If the vectors are dependent
                if(math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
                    vecV = GeoMath.rotateVecByVec(vec2, prim_normal, 90)
                    # Quads!!
                    if(GeoMath.vecDotProduct(vecV, vec1) < -epsilon):
                        vecV = GeoMath.rotateVecByVec(vec2, prim_normal, -90)
                else:
                    vecV = vec1
                vecH = vec2
            else:
                # If the vectors are dependent
                if(math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
                    vecV = GeoMath.rotateVecByVec(vec1, prim_normal, 90)
                    # Quads!!
                    if(GeoMath.vecDotProduct(vecV, vec2) < -epsilon):
                        vecV = GeoMath.rotateVecByVec(vec1, prim_normal, -90)
                else:
                    vecV = vec2
                vecH = vec1
        else:
            # We consider that x is vertical and z horizontal
            if(math.fabs(vec1[0]) > math.fabs(vec2[0])):
                # If the vectors are dependent
                if(math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
                    vecV = GeoMath.rotateVecByVec(vec2, prim_normal, 90)
                    # Quads!!
                    if(GeoMath.vecDotProduct(vecV, vec1) < -epsilon):
                        vecV = GeoMath.rotateVecByVec(vec2, prim_normal, -90)
                else:
                    vecV = vec1
                vecH = vec2
            else:
                # If the vectors are dependent
                if(math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
                    vecV = GeoMath.rotateVecByVec(vec1, prim_normal, 90)
                    #Quads!!!
                    if(GeoMath.vecDotProduct(vecV, vec2) < -epsilon):
                        vecV = GeoMath.rotateVecByVec(vec1, prim_normal, -90)
                else:
                    vecV = vec2
                vecH = vec1

        if(GeoMath.vecDotProduct(dirVec, vecH) < 0):
            vecH = GeoMath.vecSub([0, 0, 0], vecH)
        if(GeoMath.vecDotProduct(dirVec, vecV) < 0):
            vecV = GeoMath.vecSub([0, 0, 0], vecV)
        vecH = GeoMath.vecNormalize(vecH)
        vecV = GeoMath.vecNormalize(vecV)
        return vecH, vecV
コード例 #2
0
 def calculateDisplacement(self, curEdge, nextEdge):
     """
         Edges are correlatives and in wise direction
     """
     curEdgeNor = GeoMath.vecSub(curEdge[1], curEdge[0])
     curEdgeNor = GeoMath.vecNormalize(curEdgeNor)
     nextEdgeNor = GeoMath.vecSub(nextEdge[1], nextEdge[0])
     nextEdgeNor = GeoMath.vecNormalize(nextEdgeNor)
     return GeoMath.vecSub(curEdgeNor, nextEdgeNor)
コード例 #3
0
 def calculateDisplacement(self, curEdge, nextEdge):
     '''
         Edges are correlatives and in wise direction
     '''
     curEdgeNor = GeoMath.vecSub(curEdge[1], curEdge[0])
     curEdgeNor = GeoMath.vecNormalize(curEdgeNor)
     nextEdgeNor = GeoMath.vecSub(nextEdge[1], nextEdge[0])
     nextEdgeNor = GeoMath.vecNormalize(nextEdgeNor)
     return GeoMath.vecSub(curEdgeNor, nextEdgeNor)
コード例 #4
0
 def bresenham(Ipoint, point1, fPoint, xSize, ySize, prim, exception):
     reload (GeoMath)
     reload (DetermineVectors)
     reload (Validator)
     curPoint = point1
     dirVec = GeoMath.vecNormalize(GeoMath.vecSub(fPoint, Ipoint))
     # Get the horizontal and vertical vectors
     xVec, yVec = DetermineVectors.DetermineVectors.detVec(prim, dirVec, exception)
     xSizeVec = GeoMath.vecScalarProduct(xVec, xSize)
     ySizeVec = GeoMath.vecScalarProduct(yVec, ySize)
     vecToFinal = GeoMath.vecSub(curPoint, fPoint)
     sizeToFinalx = abs(GeoMath.vecDotProduct(vecToFinal, xVec) / GeoMath.vecModul(xVec))
     sizeToFinaly = abs(GeoMath.vecDotProduct(vecToFinal, yVec) / GeoMath.vecModul(yVec))
     if(sizeToFinalx > xSize or sizeToFinaly > ySize):
         pointx = GeoMath.vecPlus(curPoint, xSizeVec)
         pointy = GeoMath.vecPlus(curPoint, ySizeVec)
         pointxy = GeoMath.vecPlus(curPoint, xSizeVec)
         pointxy = GeoMath.vecPlus(pointxy, ySizeVec)
         curxVec = GeoMath.vecNormalize(GeoMath.vecSub(pointx, Ipoint))
         curyVec = GeoMath.vecNormalize(GeoMath.vecSub(pointy, Ipoint))
         curxyVec = GeoMath.vecNormalize(GeoMath.vecSub(pointxy, Ipoint))
         # We get the max dot product, the vector nearest to line
         dotx = GeoMath.vecDotProduct(curxVec, dirVec)
         doty = GeoMath.vecDotProduct(curyVec, dirVec)
         dotxy = GeoMath.vecDotProduct(curxyVec, dirVec)
         pointsTemp = {}
         if(Validator.Validator.pointInsidePrim(pointx, prim)): pointsTemp[dotx] = pointx
         if(Validator.Validator.pointInsidePrim(pointy, prim)): pointsTemp[doty] = pointy
         if(Validator.Validator.pointInsidePrim(pointxy, prim)): pointsTemp[dotxy] = pointxy
         if(not pointsTemp):
             point = list(fPoint)
         else:
             bestPoint = list(pointsTemp[sorted(pointsTemp)[len(pointsTemp) - 1]])
             point = bestPoint
     else:
         point = list(fPoint)
         '''   
         if(prim.number()==54):
         print "Ipoint, fpoint"
         print Ipoint, fPoint
         print "pointx, pointy, pointxy"
         print pointx, pointy, pointxy
         print "Dots"
         print dotx, doty, dotxy
         print "sizes"
         print sizeToFinalx, sizeToFinaly            
         print "Point"
         print point
         '''
     return point
コード例 #5
0
 def applyJoker(self, point1, point2, vecH, vecV):
     vec = GeoMath.vecSub(point2, point1)
     dotH = GeoMath.vecDotProduct(vec, vecH) / GeoMath.vecModul(vecH)
     dotV = GeoMath.vecDotProduct(vec, vecV) / GeoMath.vecModul(vecV)
     if(math.fabs(dotH) < math.fabs(dotV)):
         normal = GeoMath.vecNormalize(vecH)
     else:
         normal = GeoMath.vecNormalize(vecV)
     norV = GeoMath.vecNormalize(vecV)
     norH = GeoMath.vecNormalize(vecH)
     sizeX = GeoMath.vecModul(GeoMath.vecScalarProduct(norH, dotH))
     sizeY = GeoMath.vecModul(GeoMath.vecScalarProduct(norV, dotV))
     pointI1 = GeoMath.vecPlus(point1, GeoMath.vecScalarProduct(norH, dotH / 2))
     pointI2 = GeoMath.vecPlus(pointI1, GeoMath.vecScalarProduct(norV, dotV))
     return WallPattern(normal, [list(point1), pointI1, pointI2, list(point2)], [sizeX, sizeY], 0)
コード例 #6
0
    def goToPrimPattern(self, curPoint, nextPoint, pat, tbn, pointWhichIsRelative):
        '''
        TBN aplication
        '''
        global epsilon
        for num in range(len(pat.points)):
            pat.points[num] = tbn.mulPoint3ToMatrix3(pat.points[num])
            pat.points[num] = GeoMath.vecPlus(pointWhichIsRelative, pat.points[num])
        # Transform normal vector also
        logging.debug("Changing normal" + str(pat.getNormal()))
        transformed_normal = tbn.mulPoint3ToMatrix3(pat.getNormal())
        logging.debug("Transformed normal" + str(transformed_normal))
        normalized_normal = GeoMath.vecNormalize(transformed_normal)
        logging.debug("normalized normal" + str(normalized_normal))
        pat.setNormal(normalized_normal)
        logging.debug("normalized normal set?? " + str(pat.getNormal()))
        trans = GeoMath.vecSub(curPoint, pat.getFirstPoint())
        likelyPointF = GeoMath.vecPlus(pat.getLastPoint(), trans)
        if(GeoMath.vecModul(GeoMath.vecSub(likelyPointF, nextPoint)) > epsilon):
            trans = GeoMath.vecSub(curPoint, pat.getLastPoint())

        for num in range(len(pat.getPoints())):
            pat.points[num] = self.translatePointToPrim(pat.points[num], trans)

        if(GeoMath.vecModul(GeoMath.vecSub(likelyPointF, nextPoint)) > epsilon):
            pat.points.reverse()
コード例 #7
0
    def calculatePoints(self):
        # Filter the points, first we get the undermost points, and then,
        # The point which less angle from z+ vector by y+ vector has.
        global epsilon
        vertices = [list(p.point().position()) for p in self.prim.vertices()]
        lessy = vertices[0][1]
        mayPoints = []
        for point in vertices:
            if((point[1] - epsilon) < lessy):
                mayPoints.append(point)
            if(point[1] < (lessy - epsilon)):
                lessy = point[1]
                mayPoints = [point]

        # We construct vectors from points to determine which is leftmost, so we delete 'y' component
        minAngle = 2 * math.pi + epsilon
        for point in mayPoints:
            vec = GeoMath.vecNormalize([point[0], 0, point[2]])
            angle = GeoMath.angleBetweenPointsByVec([0, 0, 1], vec, [0, 1, 0])
            if(angle < minAngle):
                minAngle = angle
                minPoint = point

        index = vertices.index(minPoint)
        previousPoint = vertices[index - 1]
        pointWhichIsRelative = minPoint
        nextPoint = vertices[(index + 1) % len(vertices)]

        self.set_previous_point(previousPoint)
        self.set_point_which_is_relative(pointWhichIsRelative)
        self.set_next_point(nextPoint)
コード例 #8
0
 def applyJoker(self, point1, point2, vecH, vecV):
     vec = GeoMath.vecSub(point2, point1)
     dotH = GeoMath.vecDotProduct(vec, vecH) / GeoMath.vecModul(vecH)
     dotV = GeoMath.vecDotProduct(vec, vecV) / GeoMath.vecModul(vecV)
     if (math.fabs(dotH) < math.fabs(dotV)):
         normal = GeoMath.vecNormalize(vecH)
     else:
         normal = GeoMath.vecNormalize(vecV)
     norV = GeoMath.vecNormalize(vecV)
     norH = GeoMath.vecNormalize(vecH)
     sizeX = GeoMath.vecModul(GeoMath.vecScalarProduct(norH, dotH))
     sizeY = GeoMath.vecModul(GeoMath.vecScalarProduct(norV, dotV))
     pointI1 = GeoMath.vecPlus(point1,
                               GeoMath.vecScalarProduct(norH, dotH / 2))
     pointI2 = GeoMath.vecPlus(pointI1,
                               GeoMath.vecScalarProduct(norV, dotV))
     return WallPattern(normal,
                        [list(point1), pointI1, pointI2,
                         list(point2)], [sizeX, sizeY], 0)
コード例 #9
0
    def checkTexture(self, texture, previousTexture, genPattern, Fpoint, nextPoint):

        tex, nearestPointIntersect, minDistance = texture.findIntersectionWithNearestTexture(genPattern.getPoints())
        logging.debug("Start method checkTexture, class Crack")
        if(tex):
            logging.debug('nearestPointIntersect: ' + str(nearestPointIntersect) + 'Distance: ' + str(minDistance) + 'Texture: ' + str(tex.get_material().get_name()))
        else:
            logging.debug('nearestPointIntersect: ' + str(nearestPointIntersect) + 'Distance: ' + str(minDistance) + 'No Texture')

        # If we found some interect point we clip the pattern to this point
        if(nearestPointIntersect):
            achieved = genPattern.clipPattern(nearestPointIntersect)
            if(not achieved):
                logging.error("No clipping achieved")
                return None, previousTexture
        else:
            return None, previousTexture
        # Now we have to ensure that the next texture is correct, because possibly the intersection
        # is correct and the next texture in pattern direction is correct, but maybe the direction
        # has changed due to the clipping of the pattern and the point clipped. The direction now is
        # the direction between point clipped-intersected with next texture and the final point of
        # the crack in prim.
        # also, in the NORMAL case, maybe the pattern intersect with his texture, because are exiting
        # from it, so we have to do a point in polygon to search what texture is the next

        # Check texture, for do that get the vector direction and do it little and do a point in
        # polygon with the texture
        nextDir = GeoMath.vecSub(Fpoint, nearestPointIntersect)
        logging.debug('next dir before', str(nextDir))
        if(GeoMath.vecModul(nextDir) > 0):
            nextDir = GeoMath.vecNormalize(nextDir)
            # make it little, not more little than the epsilon used at GeoMath pointInSegmentDistance method,
            # so we use a 10x bigger than epsilon, so 0.05
            nextDir = GeoMath.vecScalarProduct(nextDir, 0.05)
            nextPoint = GeoMath.vecPlus(nextDir, nearestPointIntersect)
            nextTex = texture.findUpperTextureContainingPoint(nextPoint)
            logging.debug('Direction and texture , next point: %s, next direction', str(nextPoint), str(nextDir))
        else:
            nextTex = None
            # We get the final point, so we not have to ensure anything


        logging.debug("End method checkTexture, class Crack")
        if(nearestPointIntersect):
            self.intersectionPoints.append(nearestPointIntersect)
        return nearestPointIntersect, nextTex
コード例 #10
0
    def detVec(prim, dirVec, exception):
        global epsilon
        reload(GeoMath)
        vec1 = GeoMath.vecNormalize(
            GeoMath.vecSub(list(prim.vertices()[0].point().position()),
                           list(prim.vertices()[1].point().position())))
        vec2 = GeoMath.vecNormalize(
            GeoMath.vecSub(list(prim.vertices()[2].point().position()),
                           list(prim.vertices()[1].point().position())))
        prim_normal = list(prim.normal())
        if (list(prim_normal) != [0, 1, 0]):
            # We consider that y is vertical and x horizontal
            if (math.fabs(vec1[1]) > math.fabs(vec2[1])):
                # If the vectors are dependent
                if (math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
                    vecV = GeoMath.rotateVecByVec(vec2, prim_normal, 90)
                    # Quads!!
                    if (GeoMath.vecDotProduct(vecV, vec1) < -epsilon):
                        vecV = GeoMath.rotateVecByVec(vec2, prim_normal, -90)
                else:
                    vecV = vec1
                vecH = vec2
            else:
                # If the vectors are dependent
                if (math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
                    vecV = GeoMath.rotateVecByVec(vec1, prim_normal, 90)
                    # Quads!!
                    if (GeoMath.vecDotProduct(vecV, vec2) < -epsilon):
                        vecV = GeoMath.rotateVecByVec(vec1, prim_normal, -90)
                else:
                    vecV = vec2
                vecH = vec1
        else:
            # We consider that x is vertical and z horizontal
            if (math.fabs(vec1[0]) > math.fabs(vec2[0])):
                # If the vectors are dependent
                if (math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
                    vecV = GeoMath.rotateVecByVec(vec2, prim_normal, 90)
                    # Quads!!
                    if (GeoMath.vecDotProduct(vecV, vec1) < -epsilon):
                        vecV = GeoMath.rotateVecByVec(vec2, prim_normal, -90)
                else:
                    vecV = vec1
                vecH = vec2
            else:
                # If the vectors are dependent
                if (math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
                    vecV = GeoMath.rotateVecByVec(vec1, prim_normal, 90)
                    #Quads!!!
                    if (GeoMath.vecDotProduct(vecV, vec2) < -epsilon):
                        vecV = GeoMath.rotateVecByVec(vec1, prim_normal, -90)
                else:
                    vecV = vec2
                vecH = vec1

        if (GeoMath.vecDotProduct(dirVec, vecH) < 0):
            vecH = GeoMath.vecSub([0, 0, 0], vecH)
        if (GeoMath.vecDotProduct(dirVec, vecV) < 0):
            vecV = GeoMath.vecSub([0, 0, 0], vecV)
        vecH = GeoMath.vecNormalize(vecH)
        vecV = GeoMath.vecNormalize(vecV)
        return vecH, vecV
コード例 #11
0
    def findBestPatternDynamic(self, curPoint, nextPoint, setClass, prim, patternCrack, tbn, tbnInverse, pointWhichIsRelative, texture, texturePrim):
        '''
        Get the best dynamic pattern
        
        @param curPoint:
        @type curPoint:
        @param nextPoint:
        @type nextPoint:
        @param setClass:
        @type setClass:
        @param prim:
        @type prim:
        @param patternCrack:
        @type patternCrack:
        @param tbn:
        @type tbn:
        @param tbnInverse:
        @type tbnInverse:
        @param pointWhichIsRelative:
        @type pointWhichIsRelative:
        @param texture:
        @type texture:
        @param texturePrim:
        @type texturePrim:
        '''
        logging.debug('Class AutoPattern, method findBestPatternDinamically')
        logging.debug('cur_point: ' + str(curPoint) + "next_point: " + str(nextPoint))

        # Direction of the crack
        vector = GeoMath.vecSub(nextPoint, curPoint)
        vector_rotated = tbnInverse.mulPoint3ToMatrix3(vector)
        logging.debug("vector_rotated: " + str(vector_rotated))
        # Number of attemps to try to find a good pattern
        attempts = 2
        # Get a pattern generated dynamically
        # TODO: wavelength now only 0, but it can be any number
        wavelenght = 0
        first_point = [0, 0, 0]
        # Calculate normal of pattern
        direction = GeoMath.vecNormalize(GeoMath.vecSub(vector_rotated, first_point))
        normal_of_pattern = GeoMath.vecCrossProduct(list(prim.normal()), direction)
        pattern = setClass.getRandomPattern(wavelenght, first_point, vector_rotated, normal_of_pattern)
        validatedPattern = self.validateAndAdjustPatterns(curPoint, nextPoint, setClass, prim, patternCrack, tbn, pointWhichIsRelative, texture, texturePrim, pattern)

        if(not validatedPattern):
            # Try 10 times variing random offset(seed) in the noise function to get a valid pattern
            for _ in range(attempts):
                pattern = setClass.getRandomPattern(wavelenght, first_point, vector_rotated, normal_of_pattern)
                validatedPattern = self.validateAndAdjustPatterns(curPoint, nextPoint, setClass, prim, patternCrack, tbn, pointWhichIsRelative, texture, texturePrim, pattern)
                if(validatedPattern):
                    break

        if(not validatedPattern):
            # Try "attemps" times varying the random offset(seed) of the noise funcion and do the height little to
            # increase posibilities to get a valid pattern
            height = setClass.getSizey() / 2
            reduction_height = 2
            for _ in range(attempts):
                pattern = setClass.getRandomPattern(wavelenght, first_point, vector_rotated, normal_of_pattern, height)

                validatedPattern = self.validateAndAdjustPatterns(curPoint, nextPoint, setClass, prim, patternCrack, tbn, pointWhichIsRelative, texture, texturePrim, pattern)
                # Make the height half, for get more possibilities to do a good pattern
                height = height / reduction_height
                if(validatedPattern):
                    break
        if(not validatedPattern):
            # Apply the joker pattern!
            vecH, vecV = DetermineVectors.DetermineVectors.detVec(prim, GeoMath.vecSub(nextPoint, curPoint), [0, 0, 1])
            validatedPattern = setClass.applyJoker(curPoint, nextPoint, vecH, vecV)
            logging.debug("End method finBestPatternDynamic, class Autopattern. State: Joker applied")
        else:
            logging.debug("End method finBestPatternDynamic, class Autopattern. State: good")

        return validatedPattern
コード例 #12
0
    def do(self, scale=False):
        # Calcule points to tbn matrix
        self.calculatePoints()
        # Get some arbitrary vectors conected from vertices of prim

        vec1 = GeoMath.vecSub(self.get_previous_point(), self.get_point_which_is_relative())
        vec2 = GeoMath.vecSub(self.get_next_point(), self.get_point_which_is_relative())
        # logging.debug('Two arbitrary vec1 and vec2:' + str(vec1) + ' ' + str(vec2))

        # We have to know which angle reside between the two coencted vectors, to know if suposed vectors
        # in tangent space will be correct

        angle = GeoMath.vecDotProduct(vec1, vec2) / (GeoMath.vecModul(vec1) * GeoMath.vecModul(vec2))
        angle = math.acos(angle)
        angle = math.degrees(angle)
        # logging.debug('Angle between vecs:' + str(angle))

        # We put relative one arbitrary point to tangent space


        # logging.debug('Point relative:' + str(self.get_point_which_is_relative()))
        # Determine x and y vectors, now we'll have suposed horizontal and vertical vectors acording to
        # prim and direction of the crack
        hasTheNormalToY = GeoMath.vecDotProduct(list(self.get_prim().normal()), [0, 1, 0])
        # logging.debug('Has the normal to y?:' + str(hasTheNormalToY))
        if(hasTheNormalToY < (1 - epsilon) and hasTheNormalToY > (-1 + epsilon)):
            vecH, vecV = DetermineVectors.DetermineVectors.detVec(self.get_prim(), [0, 1, 0], [0, 0, 1])
            # logging.debug('Yes, it has the normal to y and vecs are:' + str(vecH) + ' ' + str(vecV))
        else:
            vecH, vecV = DetermineVectors.DetermineVectors.detVec(self.get_prim(), [0, 0, 1], [0, 0, 1])
            # logging.debug('No, it isnt has the normal to y and vecs are:' + str(vecH) + ' ' + str(vecV))
        # CHAPUZA CON NUMEROS COMPLEJOS!!! Precision de python pésima, 1.000000001>1?? no! y math.acos error
        cosAngle = GeoMath.vecDotProduct(vecH, vec1) / (GeoMath.vecModul(vec1) * GeoMath.vecModul(vecH))
        complexAngle = cmath.acos(cosAngle)
        if(complexAngle.imag == 0):
            angleBetweenDetVecAndVecH = math.acos(cosAngle)
        else:
            if(cosAngle < 0):
                angleBetweenDetVecAndVecH = math.acos(-1)
            else:
                angleBetweenDetVecAndVecH = math.acos(1)

        # Now we have to ensure that the vec1 has the same direction that the horizontal vector, if not, we
        # change and the horizontal vector will be vec2. Also we have to check if the prim is not a quad,
        # in this case we have to get the vertical vector from horizontal vector, rotating the known angle
        # between the two vectors conected in prim (in quad we know that the angle is 90 and we already have the
        # good vectors)
        if((math.fabs(angleBetweenDetVecAndVecH) < epsilon) or (math.fabs(angleBetweenDetVecAndVecH) > (math.pi - epsilon))):
            if(scale):
                x = GeoMath.vecScalarProduct([1, 0, 0], GeoMath.vecModul(vec1))
            x = [1, 0, 0]
            y = GeoMath.rotateVecByVec(x, [0, 0, 1], angle)
            if(scale):
                y = GeoMath.vecScalarProduct(GeoMath.vecNormalize(y), GeoMath.vecModul(vec2))
            tbn = GeoMath.createTBNmatrix(self.get_previous_point(), self.get_point_which_is_relative(), self.get_next_point(), x, [0, 0], y)
        else:
            if(scale):
                x = [1, 0, 0]
            y = GeoMath.rotateVecByVec(x, [0, 0, 1], angle)
            if(scale):
                y = GeoMath.vecScalarProduct(GeoMath.vecNormalize(y), GeoMath.vecModul(vec1))
            tbn = GeoMath.createTBNmatrix(self.get_previous_point(), self.get_point_which_is_relative(), self.get_next_point(), y, [0, 0], x)
        # logging.debug('tbn: ' + str(tbn.printAttributes()))
        tbnInverse = GeoMath.Matrix(3, 3)
        tbnInverse.copy(tbn)
        tbnInverse.matrix3Inverse()

        self.set_tbn(tbn)
        self.set_tbn_inverse(tbnInverse)
コード例 #13
0
    def defCrack(self, prim, Ipoint, Fpoint, texturePrim):
        reload(AutoPattern)
        reload(Bresenham)
        reload(Data)
        reload(GeoMath)
        reload(HouInterface)
        global epsilon
        global primnumber
        # TEMP: only for debug the patterns
        # Size x and size y is the valor of some material with the minor wavelength(bigger pattern)
        curPoint = Ipoint
        self.patternCrack[prim] = []
        vertices = [list(p.point().position()) for p in prim.vertices()]
        print "vertices"
        print vertices
        # Convert prim to tangent space of patterns
        # Get some arbitrary vectors conected from vertices of prim
        vec1 = GeoMath.vecSub(vertices[0], vertices[1])
        vec2 = GeoMath.vecSub(vertices[2], vertices[1])
        # We have to know which angle reside between the two coencted vectors, to know if suposed vectors
        # in tangent space will be correct
        angle = GeoMath.vecDotProduct(vec1, vec2) / (GeoMath.vecModul(vec1) * GeoMath.vecModul(vec2))
        angle = math.acos(angle)
        angle = math.degrees(angle)

        # We put relative one arbitrary point to tangent space
        pointWhichIsRelative = vertices[1]
        # Determine x and y vectors, now we'll have suposed horizontal and vertical vectors acording to
        # prim and direction of the crack

        vecH, vecV = DetermineVectors.DetermineVectors.detVec(prim, GeoMath.vecSub(Ipoint, Fpoint), [0, 0, 1])
        # CHAPUZA CON NUMEROS COMPLEJOS!!! Precision de python pésima, 1.000000001>1?? no! y math.acos error

        cosAngle = GeoMath.vecDotProduct(vecH, vec1) / (GeoMath.vecModul(vec1) * GeoMath.vecModul(vecH))
        complexAngle = cmath.acos(cosAngle)
        if(complexAngle.imag == 0):
            angleBetweenDetVecAndVecH = math.acos(cosAngle)
        else:
            if(cosAngle < 0):
                angleBetweenDetVecAndVecH = math.acos(-1)
            else:
                angleBetweenDetVecAndVecH = math.acos(1)

        #=======================================================================
        # Now we have to ensure that the vec1 has the same direction that the horizontal vector, if not, we
        # change and the horizontal vector will be vec2. Also we have to check if the prim is not a quad,
        # in this case we have to get the vertical vector from horizontal vector, rotating the known angle
        # between the two vectors conected in prim (in quad we know that the angle is 90 and we already have the
        # good vectors)
        #=======================================================================
        print "Create TBN"
        if((math.fabs(angleBetweenDetVecAndVecH) < epsilon) or (math.fabs(angleBetweenDetVecAndVecH) > (math.pi - epsilon))):
            x = GeoMath.vecScalarProduct([1, 0, 0], GeoMath.vecModul(vec1))
            y = GeoMath.rotateVecByVec(x, [0, 0, 1], angle)
            y = GeoMath.vecScalarProduct(GeoMath.vecNormalize(y), GeoMath.vecModul(vec2))
            tbn = GeoMath.createTBNmatrix(vertices[0], vertices[1], vertices[2], x, [0, 0], y)
        else:
            x = GeoMath.vecScalarProduct([1, 0, 0], GeoMath.vecModul(vec2))
            y = GeoMath.rotateVecByVec(x, [0, 0, 1], angle)
            y = GeoMath.vecScalarProduct(GeoMath.vecNormalize(y), GeoMath.vecModul(vec1))
            tbn = GeoMath.createTBNmatrix(vertices[0], vertices[1], vertices[2], y, [0, 0], x)

        print "Edn create tbn"
        tbnInverse = GeoMath.Matrix(3, 3)
        tbnInverse.copy(tbn)
        tbnInverse.matrix3Inverse()

        # Get the first material:
        print "texture get first layer"
        texture = texturePrim.getFirstLayer(Ipoint)
        nextMaterial = texture.get_material()
        print "end get material"
        # Create status of the process to show to the user
        distance_to_complete = GeoMath.vecModul(GeoMath.vecSub(curPoint, Fpoint))
        ui_process_status = UIProcessStatus.UIProcessStatus('crack for prim',
                                                                distance_to_complete)
        while(GeoMath.vecModul(GeoMath.vecSub(curPoint, Fpoint)) > epsilon):
            # Print status of the process
            dist = GeoMath.vecModul(GeoMath.vecSub(curPoint, Fpoint))
            ui_process_status.calculate_status(dist, inverse=True)
            ui_process_status.print_status()

            genPattern = Data.GeneralPattern()
            for wavelength in nextMaterial.mat.keys():
                singleMat = nextMaterial.mat[wavelength]
                setOfTypeOfPattern = CDF.cdf([[singleMat.classesAndPercentage[k], k] for k in singleMat.classesAndPercentage.keys()])
                if(wavelength == 0):
                    nextPoint = Bresenham.Bresenham.bresenham(Ipoint, curPoint, Fpoint, setOfTypeOfPattern.getSizex(), setOfTypeOfPattern.getSizey(), prim, [1, 0, 0])
                    pat = AutoPattern.AutoPattern(curPoint, nextPoint, setOfTypeOfPattern, prim, wavelength, self.patternCrack, tbn, tbnInverse, pointWhichIsRelative, texture, texturePrim).pattern
                genPattern.applyPattern(pat, wavelength)

            # Check texture
            previousTexture = texture
            pii, texture = self.checkTexture(texturePrim, previousTexture, genPattern, Fpoint, nextPoint)
            logging.debug('Pii defcrack: ' + str(pii))
            logging.debug('CurPoint defcrack: ' + str(curPoint))
            logging.debug('genPattern ' + str(genPattern.getPoints()))
            '''
            if(not curPoint):
                curPoint=genPattern.getLastPoint()
            '''
            curPoint = genPattern.getLastPoint()
            if(texture):
                nextMaterial = texture.get_material()
            else:
                if(not (GeoMath.vecModul(GeoMath.vecSub(curPoint, Fpoint)) > epsilon)):
                    logging.error('Texture no matched, previous texture applied')
            # version 4
            self.patternCrack[prim].append(genPattern)